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Nesta tese, apresentamos um estudo aprofundado de mecanismos químico-
eletroquímicos em sistemas de eletrodo de disco rotatório tanto em estado estacionário
quanto em estado transiente. Neste intuito, discretizamos as equações exatas de
convecção-difusão-reação utilizando o método das diferenças finitas em malhas lineares
ou exponencialmente espaçadas, evitando a introdução de novas simplificações. Difer-
entes combinações de parâmetros (velocidade de rotação, número de Schmidt e constantes
de reação) foram utilizados para analisar seus efeitos na densidade de corrente limite, na
impedância de difusão e na impedância eletro-hidrodinâmica. Nossos resultados esta-
cionários mostram que, mesmo em sistemas com constantes de reação elevadas, a hipótese
da camada de reação sempre se mostrará falsa para velocidades de rotação suficientemente
altas. Assim, um sistema de cinética rápida é simplesmente aquele para o qual a hipótese
da camada de reação é válida para toda a faixa de velocidade de rotação investigada. Os
resultados transientes mostram que a combinação de impedância de difusão e de impedân-
cia eletro-hidrodinâmica é capaz de identificar mecanismos químicos-eletroquímicos. Por
fim, também investigamos como as variações da velocidade de rotação, da constante de
equilíbrio e do número de Schmidt podem alterar as curvas de impedância obtidas, o que
pode ser utilizado para ajuste de curvas experimentais.
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In this thesis, we present a thorough study of chemical-electrochemical mechanisms
in rotating disk electrode systems. For that purpose, we used the finite differences method
to discretize the exact convection-diffusion-reaction equations in linear or exponentially
spaced grids, taking care to avoid additional simplifications. Different sets of parameters
(rotation speed, Schmidt number and reaction rate constants) were used to analyse their
effects on the limiting current density, on the diffusion impedance and on the electro-
hydrodynamic impedance. Our steady state results show that, even in systems with high
reaction rate constants, the reaction layer hypothesis will fail for sufficiently high rotation
speeds. Hence, a system with fast kinetics can be defined one for which the reaction
layer hypothesis is valid for the whole rotation speed range investigated. The results
for transient state show that combining diffusion impedance and electro-hydrodynamic
impedance measurements is useful in identifying chemical-electrochemical mechanisms.
Finally, we also investigated how varying the rotation speed, the equilibrium constant
and the Schmidt numbers affects the impedance curves, which can be used for fitting
experimental curves.
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Chapter 1

Introduction

The rotating disk electrode (RDE) is one of the most important electrode configura-
tions known to the electrochemist. It is easy to set up and manipulate, but, more impor-
tantly, it has a firm theoretical basis which has been successfully used in interpreting ex-
perimental data [1]. Once conceived as a tool to extract steady state information (mostly,
the electrode current), the RDE was soon applied to the study of transient phenomena.
Again, a large body of theory was developed to provide a way for the experimentalist to
extract useful parameters from data [2].

Nevertheless, most of the theory is devoted to systems whose mechanisms involve a
single charge transfer step without kinetic complications. The study of more complex
systems - for instance, chemical-electrochemical (CE) processes, in which the electro-
chemical step is preceded by a chemical one - has usually followed two ways. One is
the use of additional hypotheses to simplify the model equations, providing an analyti-
cal treatment that is useful, but restricted to particular situations [3, 4]. The other is the
development of numerical procedures to solve the relevant equations. Currently, the lat-
ter approach is the only way to scrutinize the behaviour of CE processes with arbitrary
parameters [5–8].

Although different numerical and semi-analytical methods have been employed
[9, 10], there has not been a work which combines both steady state and impedance sim-
ulations, especially the diffusion impedance and the electro-hydrodynamic impedance,
without resorting to further simplifications. Hence, a procedure able to tackle the exact

governing equations is lacking.
The purpose of this thesis is to scrutinize an aspect which has been neglected by the

existing literature: a thorough study of CE reactions without invoking additional hypothe-
ses. Therefore, our aim is to explore the limitations of the other approaches as well as the
behaviour of systems which cannot be described by these more restrictive models. For
this purpose, we use a numerical procedure capable of solving the exact equations gov-
erning the behaviour of CE processes in RDE systems. In particular, we focus on the study
of the steady state behaviour (limiting current density) and of the mass-transfer transient
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processes (diffusion impedance and electro-hydrodynamic impedance).
The text is divided in six chapters: Chapter 2 introduces basic electrochemical con-

cepts necessary to develop the model equations for the problem. Chapter 3 presents a
literature review of the different procedures used to solve steady and transient state prob-
lems of CE processes in RDE systems. In chapter 4, we detail the numerical procedure
employed and the methodology used to analyse the effect of different parameters. Results
are presented and discussed in chapter 5. Lastly, chapter 6 contains our final conclusions
and future works to be developed.

We are about to embark on a journey in search of knowledge. Although we know
where we want to go, we haven’t figured out which trails to take yet. But we are not
worried, because we are not alone; we can count on those who came before to guide us
with their knowledge until we are ready to continue on our own. Certainly, this adventure
will not be an easy one, but it wouldn’t be worth anything otherwise.

There’s only one question to answer before we begin: is the reader ready to join us?
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Chapter 2

Theoretical background

2.1 Laying the bricks, paving the road

The modelling of electrochemical processes is a very rich and diverse research field.
During the course of this thesis, several different results will be presented and much of
the discussion will be on a level of development in which we will be asking questions of
the kind: what are the underlying hypotheses of this model? How can we interpret this

result considering that result? Which mechanism is able to compile all this information
without leaving any gaps? There’s no doubt that these are truly essential questions which
are intrinsically connected to the main goals of this thesis. However, before addressing the
actual scope of this text, chemical-electrochemical reactions, it is much more important
to determine how we are going to investigate it and why we chose this route. In a sense,
this fundamental knowledge constitutes the road that will lead us to the matters that really
interest us. This chapter is devoted to paving this road.

2.2 Heterogeneous charge transfer processes

Contrary to the so-called homogeneous reactions, which may happen at any point
inside a single phase, electrochemical reactions always occur at an interface, hence the
denomination heterogeneous commonly used to describe them. More precisely, charge
transfer takes place at the interface between metal (an electronic conductor, or electrode)
and solution (an ionic conductor, or electrolyte). Nevertheless, a simple charge transfer
is not enough to apprehend the whole dynamics of the system. The following figure,
figure 2.1, demonstrates the other steps involved in a reaction of the kind:

O + ne−
k1
−−−⇀↽−−−

k−1
R (2.1)

This example points out two important aspects:
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Figure 2.1: Steps involved in a charge transfer heterogeneous process [11].

• Since the charge transfer is located at the metal/solution interface, transport phe-
nomena associated with the coming and leaving of electroactive species have to be
taken into consideration. Besides, such species may adsorb on the electrode surface,
i.e., accumulate at the interfacial region due to electrostatic interactions, formation
of covalent bonds or dipole effects [12, 13]. The sequential nature of these steps
makes them as important as the electron transfer when computing transfer rates,
measured in the form of electric current.

• Steady state measurements, i.e., measurements made when the variable in question
is no longer time-dependent, are, in principle, insufficient to describe the system
properly. Why is that? Considering an a priori lack of knowledge of the dynam-
ics, it’s not possible to identify exactly the contribution of each step to the steady
state current. Only at very specific cases, such as those specified for the proper use
of the rotating disk electrode (RDE), it is possible to build a model with explicit
expressions for both kinetic and mass transter rates [11]. Even so, RDE equations
are unable to provide further information regarding homogeneous reactions, ad-
sorption/desorption phenomena or even the origin of the mass transfer limitation
(formation of solid film, colloidal dispersions or partially blocked surfaces [14]).
Therefore, the use of techniques that allow the identification of the number of steps
involved, their nature and their impact on the overall current is essential. These
techniques, known as transient techniques, form the basis of modern electrochemi-
cal methods.

Now, a general picture of the systems we are going to model has been drafted. How-
ever, before moving on, it is important to realize that, for a charge transfer to occur, there
must be an electrical potential gradient across the electrode/electrolyte interface. Why

would such a potential exist and how could it emerge? These fundamental questions will
lead us to a brief discussion about the region comprised of this very thin layer between
electrode and electrolyte solution called the electrical double layer (EDL) [11].
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2.3 Charge separation and the electrical double layer

One could argue that the development of a potential difference across the elec-
trode/electrolyte interface is a result of the loss of symmetry that would, otherwise, ex-
ist in a homogeneous system (such as the solution bulk) [15]. In that respect, it is the
very existence of this interface that will inevitably lead, e.g., to a localized alignment of
dipoles and electrons, resulting in a non-zero electric field. It is this charge separation
phenomenon that gives rise to the electrical double layer. For matters of simplicity, we’ll
deal exclusively with interfaces developed between solid metallic electrodes and aqueous
electrolyte solutions.

The formation of the EDL involves the segregation of positive and negative charges on
the electrode/electrolyte solution interface, which may take place in the form of dipoles,
polarized atoms, ions etc [12]. This segregation may occur because of preferential ad-
sorption or the application of an external potential, for example. The build-up of charges
on the solution side, qS, leads to an equal build-up on the electrode surface, qM, and the
distance between the charged surfaces may be as small as 100 Å [11]. A careful exami-
nation allows us to notice the similarity between the EDL structure and that of a capacitor
and, in fact, it is very common to characterize the former (for a given electrode/electrolyte
solution pair) using a capacitance (Cdl). It must be said, though, that the double layer ca-
pacitance differs from the ideal capacitor because it depends, among other parameters, on
the applied potential.

A more detailed description of the double layer structure, due to the work of Grahame,
is presented in figure 2.2. It shows that the EDL is, in fact, divided in three regions
[12, 16, 17]. The innermost, which is adjacent to the electrode surface, is composed of
specifically adsorbed ions and water dipoles. The electrical center of these species is
aligned and defines the so-called inner Helmholtz plane (IHP). Next to this layer, there is
the one formed by solvated cations, or nonspecifically adsorbed anions, and their centers
define the outer Helmholtz plane (OHP). Finally, between the OHP and the solution bulk,
there is the diffuse layer composed of solvated species whose distribution is defined by an
equilibrium between thermal motion and long range electrostatic forces. Here, we must
make a distinction between the diffuse and the diffusion layers. Although it is possible for
both to present a concentration gradient, there’s a net charge accumulation in the diffuse
layer, but not in the diffusion layer [17].

The complex structure of the EDL has been found to not only influence the results
of electrochemical measurements, but the electrode kinetics itself. A classical treatment,
given by Frumkin, illustrates two immediate impacts [11, 12, 17].

• If the electroactive species is not specifically adsorbed, for example, the driving
force of the charge transfer will not be the potential difference between metal and
the solution bulk, but roughly the potential difference between metal and the OHP.
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Figure 2.2: Graphical representation of the electrical double layer according to the model
proposed by Grahame [12].

• Also, the concentration of theses species at the OHP differs from that of the bulk
solution and must be corrected.

Clearly, the existence of the EDL is not a mere theoretical artefact used to provide con-
sistency to the electrochemical theory. Instead, it is at the heart of the charge separation
phenomenon that is observed in electrode/electrolyte solution interfaces. As will be seen
later, it has also an influence on the results of electrochemical impedance experiments,
one of the major transient techniques used to investigate electrochemical systems.

Would a theory of charge transfer be sufficient to properly describe electrochemical
systems? If we go back to figure 2.1, we’ll see that any description of these systems is
not complete until it takes the mass transport of electroactive species into account. Even
in situations in which we want to focus solely on the kinetic effects, a proper knowledge
of the transport phenomena is necessary to exclude their contribution to the electrode
current. On the other hand, one might also be interested in designing systems in which
the mass transport effects on the electrode current will provide key information on the
global reaction mechanism - an approach which captures the essence of this thesis.

2.4 Mass transport in electrolyte solutions

2.4.1 General equations and initial hypotheses

The transport of ionic species in solution can be divided in three components: diffu-
sion, convection and migration. Hence, the overall molar flux density, i.e., the number
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of moles crossing an unit area per unit time, of any species i will be the sum of each
component contribution:

Ji = Ji,d + Ji,c + Ji,m (2.2)

Where Ji,d stands for the diffusion flux density; Ji,c, for the convective flux density and
Ji,p, for the migration flux density.

Since the electrical current density, i, is the net charge per area transferred over time,
the overall current density can be easily calculated from the flux densities:

i =
∑

i

ziFJi = F
∑

i

ziJi (2.3)

Where zi corresponds to the electric charge of species i and F is the Faraday constant.
Also, if we apply the principle of mass conservation (a proof of this result can be

found in section A of the appendix) to any species i, whose concentration is given by ci ,
we find that:

∂ci

∂t
=

−∑
i

∇ · Ji

 + Ri (2.4)

Where Ri represents the homogeneous reactions which may take place at the solution
bulk.

Finally, we can use Poisson’s equation, which relates electrostatic potential, Φ, and
charge density, ρc:

∇2Φ = −
ρc

ε
(2.5)

Where ε corresponds to the permittivity of the medium.
These four equations constitute the basis upon which we shall develop a model for

the electrochemical systems. Moving on, we present two hypotheses that will allow us to
simplify our model:

• The following developments are restricted to ideal solutions. This allows us to ne-
glect several different interactions between ionic species and complicating factors,
such as friction coefficients; thus, greatly simplifying the final equations [17, 18].

• The medium is one of homogeneous permittivity, which allows us to rewrite equa-
tion 2.5 as:

∇2Φ = −
F

ε

∑
i

zici (2.6)

We are now ready to discuss analytical expressions for each of the fluxes mentioned
above. Further hypotheses will be presented as we detail the model.
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2.4.2 Migration

Migration is the motion of charged particles due to the existence of an electric poten-
tial gradients in solution. Therefore, this kind of transport does not affect neutral species,
such as water molecules. Even though a charged particle would tend to accelerate in the
presence of an electric field, experiments show that ions in solution move at a constant
speed. The reason for this is that there is a drift force due to the viscosity of the fluid which
compensates the electromagnetic force. Thus, the average velocity of ions in solution has
been estimated to be [19]:

v̄i =
ziFχ

6πµriNA
(2.7)

Where χ stands for the electric field, µ for the dynamic viscosity of the solution, ri for the
radius of the ion and NA for Avogadro’s constant. A derivation of this result can be found
in section B of the appendix.

Now that we know the average velocity of a charged particle in an electric field, we
can use it to calculate the migration flux density. A general form of any flux density is:

Ji = ci v̄i (2.8)

However, instead of using the explicit equation for the velocity, it is more common to
work with the electrochemical mobility, ui , which represents the ratio between terminal
velocity and the driving force for migration [20]. The value of ui can be calculated as:

ui =
NAvi

ziFχ
(2.9)

Hence, equation 2.8 becomes:
Ji,m = ziFciuiχ (2.10)

Lastly, we can substitute the electric field for the electrical potential, which is easier to
manipulate. Knowing that both are related by χ = −∇Φ leads to the final form of the
migration flux:

Ji,m = −ziFuici∇Φ (2.11)

2.4.3 Diffusion

Diffusion expresses the movement of molecules due to a chemical potential gradient

(∇µ) within the solution [21].
Ji,d ∝ ∇µi (2.12)

If experiments are performed under more restricted conditions, such as those of dilute
and ideal solutions, one finds that the diffusion flux is also proportional to the concen-
tration gradient. Therefore, we must bear in mind that the usual view of diffusion as a
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product of concentration differences is an approximation of a more complex theory. For
this simpler case, two very important equations can be used to quantitatively describe the
diffusion phenomenon and its impact on the concentration profile of the species involved.
The former is known as Fick’s first law, which states that:

Ji,d = −Di∇ci (2.13)

Where Di corresponds to the diffusion coefficient of species i. In this formulation, we
have tacitly assumed that the diffusion coefficient of any species is constant for a given
pressure and temperature.

Because the diffusion flux can only be established once a concentration difference
arises, one can also expect a dependence of concentration on time. This time dependence
is given by Fick’s second law, which is no more than the conservation equation restricted
to diffusion flux:

∂ci

∂t
= −∇ · Ji,d =⇒

∂ci

∂t
= Di∇

2ci (2.14)

For species which are either generated or consumed at the electrode surface, a concen-
tration build-up/depletion will take place, causing the concentration profile to differ from
the average concentration value at the solution bulk. The length of this region, known
as the diffusion layer thickness (δD), is a typical parameter used to estimate the extent of
diffusion and depends on the experimental conditions [21]. Under steady state and uni-
directional flow, the diffusion flux has a very simple form when the process takes place
between two regions of fixed concentration:

∂ci

∂t
= 0 =⇒ ∇ · Ji,d = 0 (2.15)

Ji,d = Di
cb

i − cs
i

δD
(2.16)

Where cb
i is the concentration at the solution bulk and cs

i is the concentration at the elec-
trode surface.

Hence, when the electrochemical process is diffusion-controlled, the current density
may be calculated as follows:

i = zFDi
cb

i − cs
i

δD
(2.17)

The use of equation 2.17 to interpret electrochemical data is due to Nernst. He pro-
posed that, inside the diffusion layer, there was no fluid motion and, so, a concentration
gradient could be developed. For stationary processes, this also means that the concen-
tration profile within the boundary layer must be linear [1]. Although simple, Nernst’s
idea of using a linear profile to estimate the diffusion layer thickness has proved use-
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ful in many practical applications and is still used to this date, being sometimes labelled
Nernst’s diffusion layer.

2.4.4 Convection

Convection means the transport of dissolved species due to fluid motion. Conse-
quently, it is independent of any property of the solutes (such as their charge) and is
caused by a pressure or temperature gradient within the fluid [22]. The flux generated can
be expressed as:

Ji,c = civ (2.18)

Where v represents the average velocity field of the fluid.
Convective motion may be set in a deliberate way, for instance by mechanically stir-

ring the solution, or it may happen due to natural processes - e.g., density gradients and
gravitational forces. The former is labelled forced convection and, the latter, natural con-

vection.
To determine the velocity field, we must resort to the equations of fluid mechanics.

The first one concerns the conservation of fluid mass, also known as the continuity equa-
tion [23]:

∂ρ

∂t
= −∇ · (ρv) (2.19)

Where ρ corresponds to the fluid density.
The second one deals with linear momentum conservation [23]:

∂v
∂t
+ v · ∇v = −

1
ρ
∇p +

1
ρ
∇ · τ + g (2.20)

Where p denotes the pressure field; τ, the viscous stress tensor and g, the gravitational
acceleration.

Because of its non-linearity, equation 2.20 present a degree of complexity which ren-
ders impossible any analytical treatment. Nonetheless, a few additional considerations
can be made to help simplifying the problem. These new hypotheses will be considered
valid in further treatment of fluid behaviour throughout this thesis:

• The fluid is incompressible, i.e., it has constant density both in space and time.
Consequently, equation 2.19 reduces to:

∇ · v = 0 (2.21)

• The fluid is newtonian, so its viscous stress vector is symmetric and given by:

τ = µ
(
∇v + ∇vT

)
(2.22)
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This way, equation 2.20 can be rewritten as:

∂v
∂t
+ v · ∇v = −

1
ρ
∇p + ν∇2v + g (2.23)

Where ν represents the kinematic viscosity of the fluid. This vector equation is
referred to as the Navier-Stokes equation [23].

2.4.5 The electroneutrality hypothesis

A widely adopted hypothesis in electrochemical models is the electroneutrality hy-

pothesis: ∑
i

zici = 0 (2.24)

There is, however, a misconception about the ideas that lead to this assumption. Even
though it is often portrayed as a fundamental property of these systems, the electroneu-
trality condition is an approximation [17, 18, 24]. We have already pointed out that the
actual equation describing the distribution of net charge is given by Poisson’s equation:

∇2Φ = −
F

ε

∑
i

zici

How, then, can we get from equation 2.6 to equation 2.24? First, notice that the order
of magnitude of the term F

ε is about 1014 V m
mol for typical aqueous solutions. Additionally,

most experiments are conducted with excess supporting electrolyte (more on this topic
later) and, as a result, the electric field is nearly constant throughout most of the solution
and its gradient is many orders of magnitude smaller than 1014 V m−2. Accordingly, a
very small difference between anion and cation concentrations is necessary to generate
these electric field gradients. Indeed, it has been shown that even in solutions of binary
electrolytes, in which migration effects are usually more pronounced, an imbalance be-
tween 10−11 and 10−7 mol/L would be sufficient to generate the calculated electric field
gradients [17, 18]. Most experiments employ concentrations much higher than these and
the bulk concentrations remain essentially unaltered, thus, justifying the electroneutrality
hypothesis.

This rationale leads to two very important observations. First, at no point was it said
that the electroneutrality hypothesis implies the Laplace equation for potential:

∇2Φ = 0 (2.25)

As a matter of fact, the correct approach when including electroneutrality is to adopt it

instead of Poisson’s equation. The negligible value of net charge density does not allow
us to conclude that ∇2Φ is also negligible on account of the extremely high value of F

ε
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[17, 24].
The other observation concerns the regions where electroneutrality does not hold.

We’ve mentioned in section 2.3 that the electrical double layer is a region whose main
characteristic is presence of an excess of charge density. Evidently, one cannot apply
the electroneutrality condition to the EDL, but that may raise the question of why, then,
is it customary to develop models in which the hypothesis holds for the solution as a
whole. Once again, in most cases, the thickness of the EDL will be ≤ 100 nm while the
model scale will be much larger. This allows us to treat the EDL as part of the solution
interface. This is further facilitated by the presence of excess supporting electrolyte. Still,
in extremely dilute solutions, the EDL might extend appreciably inside the solution and
one must necessarily deal with a depart from electroneutrality in the model [17, 18].

2.4.6 Transport laws for ideal, dilute solutions

Having presented our initial set of hypotheses, we can finally write an explicit equa-
tion for the flux density of a species i:

Ji = −Fuizici∇Φ − Di∇ci + civ (2.26)

And also for their mass conservation:

∂ci

∂t
= −∇ · Ji + Ri (2.27)

∂ci

∂t
= Di∇

2ci + Fuizi∇ · (ci∇Φ) − v · ∇ci + Ri (2.28)

Finally, the current density is given by:

i = F
∑

i

ziJi

i = −F2∇Φ
∑

i

(
z2

i uici

)
− F

∑
i

(ziDi∇ci) +
���

���*
0(Electroneutrality)

F
∑

i

ziciv

i = −F2∇Φ
∑

i

(
z2

i uici

)
− F

∑
i

(ziDi∇ci) (2.29)

There is still another condition which we can impose to further simplify the equations.
In this case, though, it is not an assumption we make about the physical nature of the
system, but an experimental feature: the use of excess supporting electrolyte.

2.4.7 The role of the supporting electrolyte

Supporting electrolyte is any electrolyte whose function is uniquely to increase the
solution conductivity. Thus, when in excess, it has the effect of minimizing the migration
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term of the flux density by making the potential drop negligible. Under these circum-
stances, only diffusion and convection will contribute to the flux density of species:

Ji = −Di∇ci + civ (2.30)

Likewise, for mass conservation:

∂ci

∂t
= Di∇

2ci − v · ∇ci + Ri (2.31)

Also, the current density will be determined exclusively by the diffusion fluxes:

i = −F
∑

i

(ziDi∇ci) (2.32)

From a mathematical point of view, the use of excess supporting electrolyte has a
tremendous effect. Since the potential gradient is present in all flux equations, they are
coupled and must be solved simultaneously. But, if we get rid of the migration term, all
the equations become independent from each other. The procedure, then, becomes not
only easier, but less time-consuming [17].

The amount of supporting electrolyte necessary to make migration negligible depends
on the concentration of the minor, electroactive species. Oldham and Zoski have calcu-
lated that, in the case of multi-ion homovalent solutions, a 33-fold excess of supporting
electrolyte is sufficient to make the migration/diffusion flux ratio equal to 1% [19]. Ev-
idently, if the reacting species themselves are already in large concentrations, their very
presence might be enough to mitigate any migration effects.

Another advantage of adding excess supporting electrolyte, already mentioned in sub-
section 2.4.5, is keeping the EDL length negligible when compared to the problem scale.
Under these conditions, Poisson’s equation can be safely replaced by the electroneutrality
hypothesis.

From this point on, we’ll incorporate the presence of excess supporting electrolyte in
our models. By now, we have been careful to define the equations that govern the be-
haviour of an electrochemical system. However, we have not yet addressed what happens
at the boundaries; namely the solution bulk and the electrode surface.

2.4.8 Electrode surface and the solution bulk

Boundary conditions in electrochemical systems can be of two types: we can either
define a value for the concentration of a species or to its flux - and, consequently, to
its current density contribution. In the case of the solution bulk, it is more common to
specify boundary conditions of the first type. That happens because we can consider that
the boundary (i.e., the solution bulk) is far enough so as to remain undisturbed by the
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electrochemical reactions. It might also be the case that the species under study does not
exist in solution prior to the electrochemical reaction, so its bulk concentration is set to
zero. Either way, we are assuming that the major changes in solution are contained within
the problem scale.

In the subsequent discussion about boundary conditions at electrode surfaces, we’ll
restrict ourselves to systems in which there is a single electroactive species (no restriction
on the number of non-electroactive species, though). Electrode surfaces are the regions
where electrochemical reactions do take place, so it is much harder to guess what is the
exact concentration of any species. With the use of a potentiostat, it is easier to control the
potential applied or the electric current flowing through the electrochemical cell. Because
the potential influences the current value, both of these are flux density conditions. A spe-
cial case in which we can actually consider the surface concentration of an electroactive
species to be known is that of limiting current densities, an extreme situation in which
the the surface concentration of the reacting species is zero. Finally, if we also have to
consider the equations for non-electroactive species, we can simply set their flux at the
electrode surface to zero, because they are neither produced nor consumed there.

To sum it up, we can say the boundary conditions at the solution bulk are:

ci(r → ∞) = cbulk
i (2.33)

Where r represents the position measured from the electrode surface.
At the electrode surface, we can either have (for the electroactive species):

ziFDi
∂ci(r)

∂r

∣∣∣∣∣
r=0
= iapp (2.34)

Where iapp is the current density we want to apply.
Or:

ci(0) = 0 (2.35)

Lastly, for non-electroactive species:

∂ci(r)
∂r

∣∣∣∣∣
r=0
= 0 (2.36)

2.4.9 Homogeneous reactions

What happens if the electroactive species can also react with other substances at the
solution bulk? In this case, the concentration profile will be affected not only by the flux
densities, but also by a volume effect. That is well represented in equation 2.31:

∂ci

∂t
= Di∇

2ci − v · ∇ci + Ri (2.37)
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The explicit form of the term Ri will depend on the reaction mechanisms involving
each species. The most commonly studied are presented below [12]:

• Chemical-electrochemical (CE): The electroactive species can also react to produce
a non-electroactive species

CE


A

kA
−−−→←−−−

kB

B

A + ne−
kh
−−−→ C

(2.38)

• Electrochemical-chemical (EC): The product of the electrochemical step reacts to
produce a non-electroactive species

EC


A + ne−

kh
−−−→ B

B
kB
−−−→←−−−

kC

C
(2.39)

• Catalytic reaction (EC’): The product of the electrochemical step acts as a catalyst
to regenerate the electroactive species

EC’


A + ne−

kh
−−−→ B

B + D
kB
−−−→←−−−

kC

A + C
(2.40)

• Electrochemical-Chemical-Electrochemical: The product of the electrochemical
step reacts to produce a new species which is also electroactive.

ECE


A + n1e−

kh
−−−→ B

B
kB
−−−→←−−−

kC

C

C + n2e−
kh2
−−−→ D

(2.41)

The presence of homogeneous reactions adds an extra layer of complexity to the models,
because, now, the equations are coupled and, therefore, must be solved simultaneously.
For instance, in the case of a CE model, the mass-conservation equations would be:

∂cA

∂t
= DA∇

2cA − v · ∇cA + (kBcB − kAcA)
∂cB

∂t
= DB∇

2cB − v · ∇cB − (kBcB − kAcA)
(2.42)

Notice that, even though the species B is not electroactive, it has a clear effect on the
current response because it also contributes to the concentration profile of A. Solving a
set of coupled equations is very different from two independent equations and we’ll see
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that the kinetic constants (kA and kB), among other parameters, play an important role on
this.

2.4.10 What about the system?

We still haven’t discussed the velocity profile of the electrolyte solution, which is of
great importance to determine the convective flux. In subsection 2.4.4, we presented only
the equations that govern fluid flow and no mention was made to boundary conditions
or to new hypotheses. That’s because these are dependent on the geometries of both the
electrochemical cell and of the electrode, plus the nature of the convective process - i.e.,
if it is natural or forced.

In the case of quiescent solutions, we neglect the contribution of natural convection
to the total flux density. However, that comes at a cost: results from prolonged experi-
ments will deviate from theoretical predictions, because of the increasing participation of
convective effects on the total flux. On the other hand, forced convection methods will
provide a constant flow of electroactive species and the concentration profile can be safely
regarded as constant for a much larger period of time [25].

The choice for a particular configuration is related to the quality of the data it pro-
vides (reproducibility, for instance) and the easiness to interpret the results obtained. In
this thesis, we’ll focus on a particular experimental arrangement which has been success-
fully used to study both the steady state and the transient response of electrochemical
systems under mass transfer control. This is particularly useful when describing the role
of chemical-electrochemical processes, which is our primary goal. This system is the
rotating disk electrode (RDE).

2.5 Rotating disk electrodes

The RDE system was developed by Levich around the 1940’s to study the influence of
mass transter processes on electrochemical systems. Its foundations were later compiled
in his seminal book Physicochemical Hydrodynamics [1]. It consists of a cylindrical
electrode embedded in a rod of insulating material - e.g., epoxy resin. This is done in
a way to allow the cross-section of the electrode to be in contact with the electrolyte
solution. This ensemble is connected to a motor used to rotate the RDE around the z−axis
at different angular speeds. Preferably, the rotation axis should be as close as possible
to the centroidal line of the RDE because of the axial symmetry created. A schematic
representation of the system is presented in figure 2.3.

The merit of the RDE resides in the simplicity of the experimental set-up and the
use of a geometry for which the velocity profile of the fluid can be expressed analyti-
cally. The imposition of forced convection also increases reproducibility, decreases the
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Figure 2.3: Sketch of a rotating disk electrode. Arrows represent the streamlines of the
fluid. Adapted from [20].

time required to attain a steady state concentration profile and constantly replenishes elec-
troactive species and withdraws products from the electrode surface. Another advantage
is that different flow conditions can be studied with the same system by simply changing
the rotation speed [2].

Before detailing the concentration profile in RDE systems; first, we must understand
the conditions under which the flow is developed, i.e., we must determine the velocity
profile.

2.5.1 Fluid flow in RDE systems

Even though it was Levich who brought the rotating disk configuration into electro-
chemistry, the problem of determining the velocity profile around a rotating disk was a
problem that had been intriguing the scientific community for quite some time. The first
analytical solution is due to von Kárman, who posed the problem in cylindrical coordi-
nates (r, θ, z) in the following way [26]:

• The system is composed of a rotating disk of infinite radius in a solution of infinite
dimensions.

• The fluid is newtonian and flows under steady state conditions:
∂

∂t
= 0

• The coordinate system has its origin at the disk surface and the positive z−direction
points towards the solution bulk.

• Because of the axial symmetry, there is no dependence on the azimuthal compo-

nent:
∂

∂θ
= 0
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• The pressure varies only in the axial direction: p = p(z)

Applying these conditions, we can write the momentum equations:

vr
∂vr

∂r
−

vθ
2

r
+ vz

∂vr

∂z
= ν

[
∂2vr

∂z2 +
∂2vr

∂r2 +
1
r

∂vr

∂r
−

vr

r2

]

vr
∂vθ

∂r
+

vrvθ

r
+ vz

∂vθ

∂z
= ν

[
∂2vθ

∂z2 +
∂2vθ

∂r2 +
1
r

∂vθ

∂r
−

vθ

r2

]

vr
∂vz

∂r
+ vz

∂vz

∂z
= −

1
ρ

∂p

∂z
+ ν

[
∂2vz

∂z2 +
∂2vz

∂r2 +
1
r

∂vz

∂r

]
(2.43)

Where vr , vθ and vz correspond to the radial, azimuthal and axial components of the fluid
velocity respectively.

For the continuity equation, we get:

∂vr

∂r
+

vr

r
+

∂vz

∂z
= 0 (2.44)

To determine the boundary equations at the disk surface, von Kárman made use of
the common no-slip condition, which asserts that the fluid in immediate contact with a
surface has the same velocity as that surface [23]. For the case of a rotating disk, this
means: 

vr(r, 0) = 0

vθ(r, 0) = Ωr

vz(r, 0) = 0

(2.45)

Where Ω represents the angular velocity of the disk.
At the solution bulk, there are no radial or azimuthal velocities. However, for reasons

of continuity, there must be some non-zero axial velocity. We can write that as:
vr(r, z → ∞) = 0

vθ(r, z → ∞) = 0

vz(r, z → ∞) = −C

(2.46)

Where C is a positive constant. The minus sign at vz is due to the fact that positive vectors
point towards the solution. Since at infinity the velocity field points towards the disk, it
must have a negative value.

Thus, the rotating disk acts as a pump, draining solution towards its surface and then
expelling it radially.
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To solve this problem, von Kárman first introduced a dimensionless variable:

ξ =

√
ν

Ω
z (2.47)

Then, he replaced the original functions by a new set of dimensionless ones:

vr(r, z) = rΩF (ξ ) (2.48)

vθ(r, z) = rΩF (ξ ) (2.49)

vz(r, z) =
√

νΩH(ξ ) (2.50)

p(z) = ρνΩP(ξ ) (2.51)

The new set of equations (Continuity plus Navier-Stokes) now becomes:

2F + H ′ = 0

F2 − G2 + F ′H − F ′′ = 0

2FG + F ′H − G′′ = 0

HH ′ − P ′ + H ′′ = 0

(2.52)

Where the prime indicates the derivative of the function with respect to ξ .
The new boundary conditions are:

F (0) = 0; F (ξ → ∞) = 0

G(0) = 1; G(ξ → ∞) = 0

H(0) = 0; H(ξ → ∞) = −c

(2.53)

Notice that, now, one single variable is enough to describe any function. Also, the
velocity field can be calculated without having to determine the pressure field and we can
neglect the fourth equation in 2.52. Although von Kárman developed a formalism which
continues to be used, his method for calculating the approximate solution using integra-
tion contained errors and led to wrong values. This was first pointed out by Cochran, who
proposed the use of singular perturbation methods, dividing the problem in two regions:
at the vicinities of the disk and very far from it [27]. Near the disk surface, the terms F ,
G and H were expressed as a power series:

F (ξ ) = aξ −
ξ 2

2
−

bξ 3

3
−

b2ξ 4

12
+ . . .

G(ξ ) = 1 + bξ +
aξ 3

3
+

(ab − 1)ξ 4

12
+ . . .

H(ξ ) = −aξ 2 +
ξ 3

3
+

bξ 4

6
+ . . .

(2.54)
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The relation between coefficients can be determined by substituting the truncated power
series representations in the original set of equations 2.52 and comparing terms of equal
power. After this, only two coefficients rest undetermined; a and b, which Cochran cal-
culated using numerical integration and found that a = 0.510 and b = −0.616. Later
works, applying more refined techniques, were able to improve the accuracy of the coef-
ficients: a = 0.510233 and b = −0.615922 [28].

Levich used Cochran’s results and went on to define to define a hydrodynamic bound-

ary layer, a region inside which most of the velocity changes took place [1]. He defined
its thickness (δ0) to be:

δ0 = 3.6
√

ν

Ω
(2.55)

At this position, vz has, approximately, 80% of its limiting value and vθ has only 5% of
its surface value. Thus, inside this boundary layer, both tangential and radial velocities
have non-zero values. Outside of it, only the axial velocity has significant values. This
concept will be important when we discuss the mass transport in the RDE system.

Figure 2.4 shows the streamlines obtained from the solution and confirms that the
rotating disk does, indeed, act as a pump.

Figure 2.4: Cross section view (A) and side view (B) of the streamlines for the RDE
system. Adapted from [2].

We have found an analytical solution for the fluid flow. The next step is to combine
this information with the diffusion flux density to solve the mass transfer equation for the
electroactive species.

2.5.2 Mass transfer in RDE systems

In the following discussion, we’ll consider the case of a system with excess support-
ing electrolyte containing a single electroactive species (of concentration c and diffusion
coefficient D) and without homogeneous reactions. The electrode surface is smooth and
every reaction site is equivalent. Also, we’re dealing with a steady state problem. Hence,
the mass-conservation equation, in cylindrical coordinates, becomes:

D

(
∂2c

∂r2 +
∂2c

∂z2 +
1
r

∂c

∂r
+

1
r2

∂2c

∂θ2

)
−

(
vr

∂c

∂r
+

vθ

r

∂c

∂θ
+ vz

∂c

∂z

)
= 0 (2.56)
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Because of the axial symmetry, we can, once again, consider that there’s no variation
in the azimuthal direction, i.e., ∂

∂θ = 0. The equation now reads:

D

(
∂2c

∂r2 +
∂2c

∂z2 +
1
r

∂c

∂r

)
−

(
vr

∂c

∂r
+ vz

∂c

∂z

)
= 0 (2.57)

Levich, then, proposed that, even for disks with finite radius, the radial diffusion term
could be neglected, since the diffusion boundary layer thickness was considerably smaller
than the radius of the electrode surface. Smyrl and Newman used singular perturbation
methods to estimate the error introduced by this simplification and found that the correc-
tion was around 0.12%, meaning that we can safely proceed to consider only the axial
diffusion [29]. Once again, we rewrite the mass conservation equation:

D
d2c

dz2 = vz
dc

dz
(2.58)

The concentration has become dependent only on the axial direction and equa-
tion 2.58, now an ordinary differential equation, can be solved by conventional methods.
Integration of equation 2.58 gives

dc(z)
dz
= A1 exp

(∫ z

0

vz

D
dz

)
(2.59)

Where A1 is an integration constant. A final integration leads to:

c(z) = A2 + A1

∫ z

0

(
exp

(∫ t

0

vz

D
dz

))
dt (2.60)

Where A2 is another integration constant.
To determine the integration constants, we apply the boundary conditions for the con-

centration. Levich first studied cases of limiting current density, that is, those in which
the concentration at the electrode surface approaches zero. From this, we see that:

c(0) = A2+
��������������:0

A1

∫ 0

0

(
exp

(∫ t

0

vz

D
dz

))
dt (2.61)

A2 = 0 (2.62)

The other boundary condition states that the bulk concentration remains unaltered.
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Ideally, the bulk is at an infinite distance from the electrode surface, so:

c(z → ∞) = cb (2.63)

cb = A1

∫ ∞

0

(
exp

(∫ t

0

vz

D
dz

))
dt (2.64)

A1 =
cb∫ ∞

0

(
exp

(∫ t

0
vz

D dz
))

dt
(2.65)

To evaluate this integral, Levich split it in two and used the hydrodynamic boundary
layer thickness to set the new integration limits :∫ ∞

0

(
exp

(∫ t

0

vz

D
dz

))
dt =

∫ δ0

0

(
exp

(∫ t

0

vz

D
dz

))
dt︸                         ︷︷                         ︸

I1

+

∫ ∞

δ0

(
exp

(∫ t

0

vz

D
dz

))
dt︸                         ︷︷                         ︸

I2

(2.66)

Levich argues that, for typical values of diffusion coefficients (D ≈ 10−9 m2s−1) and
kinematic viscosity (ν ≈ 10−6 m2s−1) in aqueous solutions, convective effects dominate
the mass transfer throughout the whole solution, except for a small region confined near
the electrode surface, the diffusion layer, which is much smaller than δ0. Because of this,
the velocity can be expressed as the power series used for low ξ values. Levich opted to
use only the first term of the series based, again, on the thinness of the diffusion layer [1]:

vz(z) ≈ −
aΩ3/2

ν1/2
z2 (2.67)

I1 =

∫ δ0

0
exp

(∫ t

0
−

aΩ3/2

Dν1/2
z2dz

)
dt ≈

∫ δ0

0
exp

(
−
Ω3/2

6Dν1/2
t3

)
dt (2.68)

The next step involves a change of variable:

u =
Ω1/2t

3√6D1/3ν1/6
(2.69)

And the new integral becomes:

I1 =
1.81D1/3ν1/6

Ω1/2

∫ Ω1/2δ0
3√6D1/3ν1/6

0
exp

(
u−3

)
du ≈

1.81D1/3ν1/6

Ω1/2

∫ 2
(

ν
D

)1/3

0
exp

(
u−3

)
du

(2.70)

I1 =
1.81D1/3ν1/6

Ω1/2

∫ 2Sc1/3

0
exp

(
u−3

)
du (2.71)

Where Sc = ν
D is the Schmidt number.
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Since Sc � 1 and exp
(
u−3) falls very rapidly to zero, we can rewrite the integral as:

I1 =
1.81D1/3ν1/6

Ω1/2

∫ ∞

0
exp

(
u−3

)
du (2.72)

A final change of variables shows that this integral is related to the gamma function:
Γ(n) =

∫ ∞
0 e−ttn−1dt.

t = u3 (2.73)∫ ∞

0
exp

(
u−3

)
du =

1
3

∫ ∞

0
e−tt−2/3dt︸            ︷︷            ︸
Γ(1/3)

(2.74)

I1 = 1.61ν1/6D1/3Ω−1/2 (2.75)

To calculate I2, we use the fact that, for distances past δ0, the velocity field is constant:

v = vz(z) = −
√

νΩc (2.76)

Using the value of c = 0.88446 calculated by Rogers and Lance, we have[28]:

vz(z) = −0.88446
√

νΩ =⇒ I2 =

∫ ∞

δ0

exp
−0.88446

√
νΩt

D

 dt (2.77)

I2 ≈
D

0.88446
√

νΩ
exp(−3Sc) (2.78)

Using the same assumption about the order of magnitude of Sc, Levich considered
that I1 � I2, thus neglecting the latter. Now, the integration constant A1 can be evaluated:

A1 =
cb

1.61ν1/6D1/3Ω−1/2
(2.79)

Finally, the current density can be expressed:

i = zFD
dc

dz

∣∣∣∣∣
z=0
=

zFDcb∫ ∞
0

(
exp

(∫ t

0
vz

D dz
))

dt
(2.80)

i = 0.62D2/3ν−1/6cbΩ1/2 (2.81)

These results can be extended for surface concentrations greater than zero. Assuming
an arbitrary value at the electrode surface, c(0), the main changes would be:

A2 = c(0)

A1 =
cb − c(0)∫ ∞

0

(
exp

(∫ t

0
vz

D dz
))

dt

(2.82)
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So that the current density would be rewritten as:

i = zFD
cb − c(0)

1.61
(

D
ν

)1/3 √
ν
Ω

(2.83)

This latest form of the current density can be compared to the Nernstian formula that
assumes the existence of a linear concentration gradient and the absence of fluid flow
inside the diffusion layer. In doing so, we can calculate the diffusion layer thickness, δD:

zFD
cb − c(0)∫ ∞

0 exp
(∫ t

0
vz

D dz
)

dt
= zFD

cb − c(0)
δD

(2.84)

δD =

∫ ∞

0
exp

(∫ t

0

vz

D
dz

)
dt (2.85)

δD ≈ 1.61Sc−1/3

√
ν

Ω
(2.86)

Notice that δD does not depend on the radius of the electrode, meaning that it is con-
stant over its entire surface. Therefore, every reaction site on the electrode is equally
accessible to the electroactive species. Also, δD depends on Sc−1/3, so that it will be in-
creasingly smaller for higher Schmidt values. Comparing the values of δD and δ0, we see
that:

δD

δ0
≈

0.45
Sc1/3

(2.87)

Hence, for the Schmidt number that we’ve been using as reference (∼ 1000), δD

corresponds to less than 5% of δ0. Levich, noting that the whole diffusion layer would be
in a region very close to the electrode, used this result to justify the use of only one term
of the vz series expansion when performing the calculations [1].

We must stress that the diffusion layer thickness calculated according to equation 2.86
does not account for the whole region where concentration changes. As we have men-
tioned in subsection 2.4.3 and above, the Nerstian diffusion layer thickness assumes a
linear concentration gradient, but that is not true for RDE systems, as shown in fig. 2.5:

So, what is the significance of δD? For one thing, it does give a good measure of the
diffusion layer thickness. Also, it has a direct physical meaning (the thickness that would
be observed had the gradient been linear) and it is easier to calculate than a more precise
definition. For these reasons, we will adopt the Nerstian diffusion layer thickness and,
from now on, refer to it as simply the diffusion layer thickness.

2.5.3 Validation and further improvements

Among the reasons for the success of the RDE is that both its predictions and assump-
tions were very accurate and quickly confirmed. One of the earliest confirmations came
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Figure 2.5: Dimensionless concentration profile in an RDE system

from a study conducted by Hogge and Kraichman, who investigated the reduction of I–
3 in

an aqueous solution of KI – KI3 with excess of KI. The authors found a linear relationship
between the current density and Ω1/2 and that the diffusion coefficient for I–

3 calculated
according to equation 2.81 was in good agreement with independent measurements made
with non-electrochemical techniques [30].

Experiments were also conducted to assess the uniform accessibility at the limiting
current condition predicted by the independence of the diffusion layer on the electrode
radius and it was found to be accurate for both electrodeposition and electrodissolution
processes. Beacom and Hollyer observed that copper films electrodeposited on rotating
disk electrodes had uniform thickness while Kassner observed an uniform thinning of
tantalum electrodes in liquid tin [31, 32]. Hence, the homogeneity of surface processes
was found for both electrodeposition and electrodissolution.

Evidently, the theory also has its shortcomings and many work was devoted to make it
more rigorous. For instance, Gregory and Riddiford pointed out that Levich’s neglect of
higher powers when integrating

∫ ∞
0 exp

(∫ t

0
vz

D dz
)

dt led to considerable error when lower
Schmidt numbers were used and proposed a correction found after fitting an equation
dependent on Sc to numerical solutions of the integral [33]:∫ ∞

0
exp

(∫ t

0

vz

D
dz

)
dt = 0.8934 + 0.316Sc0.36 (2.88)

Later, Newman expanded the exponential considering three terms of the velocity power
series and, after analytical integration, proposed a more precise equation [34]:∫ ∞

0
exp

(∫ t

0

vz

D
dz

)
dt =

0.62048Sc−2/3

1 + 0.2980Sc−1/3 + 0.14514Sc−2/3
(2.89)

These corrections have the effect of lowering the theoretical current density and increasing
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the diffusion layer thickness.
Newman also investigated the uniformity of the current on the electrode surface and

was the first to provide theoretical calculations showing that this condition was true only

in the limiting current condition. When the surface concentration is greater than zero,
there is a current distribution over the electrode surface, because of the nonuniform po-
tential drop outside the diffusion layer. These effects are more pronounced for solutions of
low conductivity and electrochemical species with large exchange current densities [35].
Further experimental investigation proved Newman’s theory to be correct, but also that
the nonuniformity can be minimized if excess supporting electrolyte is used to establish
a constant potential in the electrolyte solution [36, 37]. Since all of our calculations as-
sume the presence of excess supporting electrolyte, we’ll consider the current to be evenly
distributed on the electrode surface regardless of the total current applied.

Indeed, we can safely say that the rotating disk electrode system has been put on very
a firm theoretical basis, which is why it continues to be extensively used more than 70
years after its first description.

2.5.4 The study of transient phenomena with RDE systems

Steady state measurements are seldom enough to study the reaction mechanism of
electrochemical processes, which is why transient methods are important to provide ad-
ditional data that can be used to develop more robust models.

Even though we have presented only steady state models for the RDE system, it can be
used to study unsteady phenomena as well. Its ability to establish tightly controlled steady
flow conditions makes it particularly suited for perturbation methods, which superpose
small-amplitude variations to the steady control parameters (such as voltage, current or
rotation speed) in order to study the system response. One of these methods is that of
electrochemical impedance, which will now be discussed in more detail.

2.6 Electrochemical impedance

2.6.1 Definition of impedance

In order to have a better understanding of the electrochemical impedance technique
and of the proper experimental conditions, it is essential to assimilate the concept of
impedance.

Consider y(t) to be the response of a linear time invariant system to a perturbation x(t)
and that both are related in the following way:

b0
dny(t)

dtn
+ b1

dn−1y(t)
dtn−1 + · · · + bny(t) = a0

dnx(t)
dtn

+ a1
dn−1x(t)

dtn−1 + · · · + anx(t) (2.90)
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We define, then, the transfer function G(s) of the system as the ratio between the
Laplace transform of the response and the Laplace transform of the perturbation [38], i.e.:

G(s) =
L[y(t)]
L[x(t)]

(2.91)

If we choose an input signal such that x(t) = A sin(ωt), the response will be y(t) =
B sin(ωt + φ) and the related transfer function H(ω) can be defined as [39]:

H(ω) = |H(ω)|eφ =
B

A
eφ (2.92)

With |H(ω)| corresponding to the modulus of H(ω) and φ to the phase shift of the
transfer function ( corresponds to the imaginary number). Finally, if x(t) corresponds to
the current (x(t) = I(t)) and y(t), to the voltage (y(t) = V (t)), H(ω) = Z (ω), which is
the impedance of the system. Hence, we define the impedance as the transfer function
which relates two variables (current and voltage) of a linear time invariant system in the
following way:

Z (ω) =
L[V (t)]
L[I(t)]

(2.93)

And, if we choose to use sinusoidal perturbations,

Z (ω) =
L[∆V sin(ωt + φ)]
L[∆I sin(ωt)]

=
∆V

∆I
eφ (2.94)

Notice that the choice of the input function (the perturbation) is completely arbitrary
and, in fact, it is not necessary in the definition of the impedance. Nonetheless, we often
use sinusoidal signals because they’re both easier to handle mathematically and to process
electronically for the impedance calculation, generating a better signal-to-noise ratio [39,
40].

Now, we have just shown that defining the impedance of a system requires that it
meets certain conditions. Thus, it is natural to raise the question: can electrochemical
systems meet these requirements?

2.6.2 Non-linearity of electrochemical systems

Our present knowledge of electrochemical systems make it safe to say that most elec-
trochemical systems have a (sometimes, markedly) non-linear behavior. Even the sim-
plest models, such as the Tafel law, exhibit an exponential dependence of the current on
potential:

ln(i) = A + bE (2.95)
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How, then, could it be possible to apply impedance calculations to our object of study?
A clever way to circumvent this problem is to linearize these complicated systems. Exper-
imentally, this can be accomplished by applying small-amplitude sinusoidal perturbations
under steady state conditions. As a result, an electrochemical impedance may be calcu-
lated [14, 39–44]. To exemplify, let’s consider the following situation in which, for the
sake of simplicity, the current is a function of the interfacial potential (E), of the coverage
of adsorbed species (θi) and of the concentration of electroactive species at the electrode
surface (ck):

I = I

E,
n∑

i=1

θi ,
m∑

k=1

ck(0)

 (2.96)

Now, let’s expand the function around an equilibrium point I =

Ī
(
Ē,

∑n
i=1 θ̄i ,

∑m
k=1 c̄k(0)

)
using Taylor series. We find, then:

I

Ē + ∆E,
n∑

i=1

(θ̄i + ∆θi),
m∑

k=1

(c̄k(0) + ∆ck(0))

 = (2.97)

Ī +
∞∑

j=1

1
j!

 ∂j

∂E j
∆E +

n∑
i=1

∂j

∂θj
i

∆θi +

m∑
k=1

∂j

∂ck(0)j
∆ck(0)

 i

E,
n∑

i=1

θi ,
m∑

k=1

ck(0)




Ē,
∑n

i=1 θ̄i ,
∑m

k=1 c̄k (0)

Should the current be a linear function, by definition we have:

I

Ē + ∆E,
n∑

i=1

(θ̄i + ∆θi),
m∑

k=1

(c̄k(0) + ∆ck(0))

 =
I

Ē,
n∑

i=1

θ̄i ,
m∑

k=1

c̄k(0)

 + I

∆E,
n∑

i=1

∆θi ,
m∑

k=1

∆ck(0)

 = Ī + ∆I (2.98)

By substituting this result in equation 2.97 and assuming that the deviations from the
stationary values (∆E,∆θi ,∆ck(0)) are small enough to let us neglect the terms of order
higher than 2, we get:

��̄I + ∆I = ��̄I+

(
∂I

∂E

)∣∣∣∣∣
Ē,

∑n
i=1 θ̄i ,

∑m
k=1 c̄k (0)

∆E +
n∑

i=1

(
∂I

∂θi

)∣∣∣∣∣
Ē,

∑n
i=1 θ̄i ,

∑m
k=1 c̄k (0)

∆θi (2.99)

+

m∑
k=1

(
∂I

∂ck(0)

)∣∣∣∣∣
Ē,

∑n
i=1 θ̄i ,

∑m
k=1 c̄k (0)

∆ck(0)

Finally, remember that if the input signal is sinusoidal, so will be the response. That
is, if ∆E = Ẽ exp (ωt), then ∆I = Ĩ exp (ωt + φ). So:
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∆I

∆E
=

Ĩ

Ẽ
exp (φ) =

1
Zf (ω)

(2.100)

1
Zf (ω)

=

(
∂I

∂E

)∣∣∣∣∣
Ē,

∑n
i=1 θ̄i ,

∑m
k=1 c̄k (0)

+

n∑
i=1

( ∂I

∂θi

)∣∣∣∣∣
Ē,

∑n
i=1 θ̄i ,

∑m
k=1 c̄k (0)

∆θi

∆E


+

m∑
k=1

( ∂I

∂ck(0)

)∣∣∣∣∣
Ē,

∑n
i=1 θ̄i ,

∑m
k=1 c̄k (0)

∆ck(0)
∆E

 (2.101)

The generality of these steps makes it safe to assume that any electrochemical model,
no matter how complicated, can be linearized by the use of small amplitude signals. The
value of this amplitude, however, is completely dependent on the system of study and, as a
consequence, no universal reference can be assumed. It is quite common to find the use of
amplitudes around 10 mV, though. This may come up from experience or as a theoretical
prediction [12, 41, 44]. Either way, it is always advisable to use additional data analysis
to ensure that the system is close enough to linear behaviour.

2.6.3 Mass transport effects: Diffusion impedance

Many electrochemical processes are related to species in solution which need to be
transported to the electrode surface in order to react. Would their impedance response
be any different from the prior cases? Let’s start by considering the simple case of an
electroactive neutral substance A in solution:

A + e−
kh
−−−→ B (2.102)

To keep things simpler, we suppose that diffusion is unidirectional, that the reaction
product B is not electroactive and that there is an excess of supporting electrolyte. In
this example, there are no adsorbed species. Instead, we have a substance which must be
transported to the electrode and, to determine its surface concentration, we must solve the
mass conservation equation. Consequently, the relevant equations are:


I = FAkhcA(0)
∂cA

∂t
= D

∂2cA

∂x2

(2.103)

Infinite diffusion layer and the Warburg impedance

For the boundary conditions, we consider that the concentration of A at the solution
bulk remains constant and that the current is given by the diffusion flux at the electrode
surface. If we consider oxidation currents to be positive, we get:
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
cA(x → ∞) = cb

A

I = FAD
∂cA

∂x

∣∣∣∣∣
x=0

(2.104)

The steady state equation for the current is given by:

Ī = FAkh c̄A(0) (2.105)

After applying the potential perturbation, we get the transient components:


∆E = Ẽ exp(ωt)

∆cA = c̃A exp(ωt)

∆I = Ĩ exp(ωt)

(2.106)

The oscillating current is given by:

∆I =
∂ [FAkhcA(0)]

∂E

∣∣∣∣∣
Ē,c̄A(0)

∆E +
∂ [FAkhcA(0)]

∂cA(0)

∣∣∣∣∣
Ē,c̄A(0)

∆cA(0) (2.107)

∆I = FAbhkh c̄A(0)∆E + FAkh∆cA(0) (2.108)

As for the concentration, we have:

∂∆cA

∂t
= FAD

∂2∆cA

∂x2 (2.109)

ωc̃A�����exp(ωt) = D
d2c̃A

dx2 �����exp(ωt) (2.110)

Hence, the relevant equations are:

∆I

FA
= bhkh c̄A(0)∆E + kh∆cA(0) (2.111)

ωc̃A = D
d2c̃A

dx2 (2.112)

∆I = FAD
∂∆cA

∂x

∣∣∣∣∣
x=0

(2.113)

The general solution to equation 2.112 is given by:
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c̃A(x) = M1 exp
(√

ω

D
x

)
+M2 exp

(
−

√
ω

D
x

)
(2.114)

In order to determine the integration constants M1 and M2, we must set the boundary
conditions for the concentration amplitude. Note that, because the bulk concentration is
constant, there will be no concentration perturbation there, that is:

c̃A(x → ∞) = 0 (2.115)

Also, we ascribe to the perturbation at the electrode surface an arbitrary value ∆cA(0).
The resulting equation for c̃A becomes:

c̃A(x) = c̃A(0) exp
(
−

√
ω

D
x

)
(2.116)

Substituting this result at equation 2.113, we get:

−
∆cA(0)
∆I

=
1

FA
√

ωD
(2.117)

The transfer function −
∆cA(0)
∆I

is called the diffusion impedance, because it relates
the impact of surface concentration oscillations on the current. Since the value of cA(0)
depends on the transport processes in action, its oscillation ∆cA(0) will also be dictated
by similar transport laws with appropriate boundary conditions. In this particular case,
we have diffusion acting in a quiescent solution. The diffusion layer extends over the
whole solution and so does the concentration amplitude, except for the superior limit of
the solution bulk.

Going back to equation 2.111, we can, now, rewrite it:

∆I

∆E︸︷︷︸
1/Zf

= FAbhkh c̄A(0)︸          ︷︷          ︸
1/Rct

+FAkh
∆cA(0)
∆E

1
Zf
=

1
Rct
+ FAkh

∆cA(0)
∆I

∆I

∆E
1
Zf
=

1
Rct
− kh

1
√

ωD

1
Zf

Zf = Rct + Rct
kh
√

ωD
(2.118)

Rct stands for the charge transfer resistance, i.e., the resistance to the passage of

current strictly due to kinetic limitations. The term Rct
kh
√

ωD
is known as the Warburg

impedance, named after the scientist who was the first to study the effect of alternating
current on the concentration profile of electroactive species in quiescent solutions [45].
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Figure 2.6 displays how this faradaic impedance looks on a Nyquist plot.

Figure 2.6: Nyquist plot of a faradaic impedance given by equation 2.118.(Rct =

5 ohm.cm2, kh/
√

D = 0.8 cm.2s−1/2)

As we can see, on a Nyquist plot, the Warburg impedance has the distinctive shape
of a straight line which makes a 45◦ angle with the real axis. When coupled with the
capacitance, the line is still discernible:

Figure 2.7: Nyquist plot of the global impedance of the system presented in fig-
ure 2.6.(Rct = 5 ohm.cm2, kh/

√
D = 0.8 cm.2s−1/2, Re = 3 ohm.cm2, Cdl =

100 µF/cm2)

A closer look at the Warburg impedance tells us that the impedance tends towards
infinity as the frequency goes towards zero. That is, on steady state, there would be no
current at all. How can we interpret that? Let’s go back to the mass conservation equation
for the steady state and solve it:
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D
dc2

A

dx2 = 0 (2.119)

cA(x) = A1x + A2 (2.120)

The problem arises when we try to determine the integration constants by applying
the boundary condition c(x → ∞), which would lead us to physically unsound results.
We conclude, then, that the conditions under which the Warburg impedance is observed
do not admit stationary solutions. Would this be in contradiction with our prior statement
that impedance measurements are performed by applying a periodical perturbation over
a steady condition? Theoretically, yes; but, in practice, this can be circumvented. The
current density for this system is given by[21]:

i =
FD1/2

A cb
A

π1/2t1/2
(2.121)

As expected, the current density depends on time and does not reach a non-zero steady
state value. Nevertheless, the rate at which it decreases also follows the same pattern,
which means that it takes longer for the current to change as time goes by. Thus, we
can perform an experiment whose duration does not allow the current (and, thus, the
concentration profile) to change considerably [41].

Finite diffusion layer: Going back to Nernst’s hypothesis

We’ll now consider the case of a diffusion layer of finite thickness - δD. This situation
can be encountered, for instance, in electrodes coated with conducting membranes [46],
electrodes covered with porous films or H2(g) diffusion in thin layers of Pd [47]. Assuming
that the concentration outside this layer is constant, the new set of boundary conditions
for the stationary mass conservation equation are:

∂cA

∂t
= D

∂2cA

∂x2 → D
d2cA

dx2 = 0 (2.122)cA(δD) = cb
A

cA(0) = c̄A(0)
(2.123)

Under this conditions, the concentration profile is found to be:

cA(x) =
cb

A − c̄A(0)
δD

x + c̄A(0) (2.124)

A close look shows that this situation is exactly what Nernst proposed in his hypothesis
about transport in electrochemical systems.
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The existence of a finite diffusion layer also changes the boundary conditions for the
oscillating concentration:

ωc̃A − D
d2c̃A

dx2 = 0 (2.125)c̃A(δD) = 0

c̃A(0) = c̃A(0)
(2.126)

Solving this differential equation, we get:

c̃A(x) =
c̃A(0)

1 − exp
(
2
√

ω
D δD

) {
exp

(√
ω

D
x

)
− exp

[√
ω

D
(2δD − x)

]}
(2.127)

And the diffusion impedance is:

−
∆cA(0)
∆I

=

tanh
(√

ω
D δD

)
FA
√

ωD
(2.128)

Where tanh(x) represents the hyperbolic tangent of x.
Finally, the faradaic impedance is given by:

Zf = Rct + Rctkh

tanh
(√

ω
D δD

)
√

ωD
(2.129)

A Nyquist plot of this faradaic impedance is presented in figure 2.8.

Figure 2.8: Nyquist plot of the faradaic impedance represented by equation 2.129. (Rct =

3 ohm.cm2, Rctkh = 4 10−3 ohm.cm2.s−1, D = 9 10−9 m2.s−1, δD = 1.13 10−5 m)

The first thing to notice is that, for systems with finite diffusion layers, the diffu-
sion impedance does not grow indefinitely. In fact, it tends towards a finite value as the
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frequency goes towards zero, much like the behaviour of loops generated by adsorbed
intermediates. But, an attentive inspection of the diffusion impedance graph shows that,
unlike those of the adsorbed species, it does not have an hemispherical shape. Indeed, its
asymptotic limit for high frequencies is a straight line with a 45◦ angle with the real axis,
i.e., its high frequency limit is exactly the Warburg impedance:

lim
ω→∞

tanh
(√

ω
D δD

)
√

ωD
=

1
√

ωD
(2.130)

Figure 2.9 shows how both impedances are, at first, coincident and, then, they start di-
verging as ω → 0.

Figure 2.9: Comparison between Warburg impedance and the diffusion impedance for
finite δD.

Can we draw some physicochemical meaning from this initial similarity between both
impedances? The answer lies in the oscillating concentration profiles. At high frequen-
cies, the concentration perturbations for both cases do not propagate much into the solu-
tion, i.e., they are essentially nil by the time they reach the thickness δD. Hence, for the
case of finite δD, it is as if the diffusion layer had infinite extent and both systems be-
have similarly. However, as the frequency decreases, concentration waves start reaching
the diffusion layer thickness and are immediately stopped. At this point, the oscillating
concentration profiles start to differ and the impedances diverge.

35



RDE systems and the convection-diffusion impedance

The former cases addressed systems whose sole transport mode was diffusion. How-
ever, in RDE systems, it is indispensable to include the convection contribution to the
overall flux. Hence, the relevant equations for the steady state are:

D
d2c̄A

dz2 − vz
dc̄A

dz
= 0 (2.131)

Ī = FAkh c̄A(0) (2.132)

With the following boundary conditions:cA(z → ∞) = cb
A

cA(0) = c̄A(0)
(2.133)

These are the same boundary conditions applied to determine the current at the origi-
nal formulation by Levich. As for the transient equation for the mass transport, we have:

ωc̃A − D
d2c̃A

dz2 + vz
dc̃A

dz
= 0 (2.134)

And the boundary conditions are:

c̃A(z → ∞) = 0

c̃A(0) = c̃A(0)
(2.135)

Contrary to its steady state equivalent, equation 2.134 does not have an analytic so-
lution. Its first numerical solution using the finite differences method was presented by
Coueignoux and Schuhmann for Schmidt numbers of 102, 103 and 104 [48]. To validate
their results, the authors made use of the fact that, as the frequency tends towards zero, the

value for
∆c

∆I
should converge to the derivative of the steady state concentration as a func-

tion of the steady state current, which can be calculated using Levich’s theory. Later on,
Levart and Schuhmann extended this work by incorporating an explicit dependence of the
diffusion impedance on the Schmidt number. In doing so, they built graphs which could
be used to determine the diffusion impedance for any Schmidt number via interpolation
[7].

Around the same period, Deslouis et al. showed that the diffusion impedance calcu-
lated by Coeuignoux and Schuhmann were in better agreement with experimental data
than the impedance obtained by fitting the data to equation 2.129 (see figure 2.10). They
attributed this to the fact that equation 2.129 makes use of Nernst’s hypothesis, disregard-
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ing the convective contribution to the mass transport [49].

Figure 2.10: Nyquist plot of the normalized diffusion impedance for a RDE system.
Marks represent experimental data. Line a represents the diffusion impedance found by
fitting the data to equation 2.129. Line b represents the diffusion impedance calculated by
Coueignoux and Schuhmann [48]. (Adapted from [49])

Many efforts have been made to find analytical expressions for the convective-
diffusion impedance. Levart and Schuhmann were the first to propose that the dimen-
sionless diffusion impedance could be written as an asymptotic series in Sc−1/3, that is
[7]:

M(z, Sc, u) = M(z,∞, u) +
M1(z, u)

Sc1/3
+

M2(z, u)
Sc2/3

+ O(Sc−1) (2.136)

Where M(z, Sc, u) = zFD

(
Ω

ν

)1/2
∆c

∆i
and u = (0.51023Sc)−2/3 ων

ΩD
.

However, the authors argued that an analytical solution of the relevant equations
would be too troublesome and opted for determining the numerical solution for a range
of Schmidt numbers. A few years later, they presented a new power series development
whose coefficients were tabulated and could be readily used to determine the diffusion
impedance for any Schmidt number [8, 50].

Newman and Homsy also worked on the problem and used singular perturbation tech-
niques to derive an asymptotic solution valid for high frequencies and infinite Schmidt
number [51]. Later on, Newman and Scherson used Laplace transforms to find a series
expansions that could be used for low frequencies [52].The results were presented in the
form of the derivative of the dimensionless concentration θ′ as a function of the dimen-
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sionless frequency K:

For high frequencies:
−

1
θ′HF (0)

=
a

a2 + b2 − 
b

a2 + b2

a =

√
2

2

(
K1/2 −

9
32

K−5/2
)

; b =

√
2

2

(
K1/2 +

9
32

K−5/2
)
−

3
4K

(2.137)

For low frequencies:

−
1

θ′LF (0)
=

r

s2 + r2 − 
s

s2 + r2

r =
1

Γ(4/3)
+ K2

∞∑
n=0

Bn

λ2
n + K2 ; s = K

∞∑
n=0

Bnλn

λ2
n + K2

(2.138)

The terms Bn and λn are, respectively, the coefficients and the eigenvalues of the Sturm-
Liouville system the authors used to find the solution for low frequencies.

Although these equations did approach the exact numerical solutions, they still failed
to reduce their margin of error to an acceptable level. This was pointed out by Levart
and Schuhmann, who showed that, in fact, their procedure was much more accurate than
Newman’s for either higher or lower frequencies [53, 54]. Indeed, when Newman and
Tribollet presented their seminal paper on electro-hydrodynamic impedance, they used
the procedure proposed by Levart and Schuhmann to determine the diffusion impedance
of an electrochemical system [55].

Also worth mentioning are the methods introduced by Deslouis et al., who used Airy
functions to obtain solutions for approximate versions of the diffusion-convection tran-
sient equation and reported a reasonable fit throughout the whole frequency range [56].

2.7 Electro-hydrodynamic impedance

Can we generalize the principle behind the electrochemical impedance technique?
What is it really based on? In its most abstract formulation, impedance methods consist
in applying a perturbation to the input signal of a system (e.g., the potential of an electro-
chemical cell) and evaluating the behaviour of the output signal (e.g., the current). There

are no restrictions to the nature of the input/output signals as long as we can propose
reliable models to interpret the results [57]. Hence, it should be no surprise that there are
several different impedance techniques that have been employed to study electrochemical
systems; for instance, thermoelectrochemical impedance [58–60], electro-optical trans-
mittance [61] and electrogravimetric impedance [62, 63].

One of these techniques is the electro-hydrodynamic impedance (EHD), which con-
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sists in varying the rotation speed of the RDE to perturb the concentration profile and,
consequently, the mass transport processes. The output signal may be either the potential
or the current [41]. The idea of superposing a sinusoidal modulation to the steady rotation
speed of a RDE was first proposed by Miller and Bruckenstein and it was refered to as
hydrodynamically modulated rotating disk electrode - HMRDE [64, 65]. However, the
authors were more interested in using this technique to improve analytical sensitivity than
in studying mass transfer phenomena.

It was the Groupe de Recherche "Physique de Liquides et Électrochimie", who had
already become an international reference on the use of electrochemical impedance, who
pioneered the treatment of this modulated rotation speed with an impedance formalism,
initially calling it electromechanical impedance [66, 67]. By 1983, Tribollet and Newman
would develop the theoretical basis and terminology which then became standard [41, 55].

2.7.1 Unsteady velocity profiles

We start by separating the steady state and transient components of the rotation speed:

Ω = Ω̄ + ∆Ω exp ωt →
Ω

Ω̄
=
Ω̄

Ω̄
+
∆Ω

Ω̄︸︷︷︸
ϸ

exp(ωt) (2.139)

Ω

Ω̄
= 1 + ϸ exp(ωt) (2.140)

Then, we assume that the modulation in the rotation speed is small enough to ensure
that the velocity profile will behave linearly. That means we can write the new velocities
as:


vr = v̄r + ϸ∆vr exp(ωt)

vθ = v̄θ + ϸ∆vθ exp(ωt)

vz = v̄z + ϸ∆vz exp(ωt)

(2.141)

Now, we introduce a new set of dimensionless velocities to account for the sinusoidal
components:


vr = rΩ̄

[
F (ξ ) + ϸf̃ (ξ, ω) exp(ωt)

]
vθ = rΩ̄

[
G(ξ ) + ϸg̃(ξ, ω) exp(ωt)

]
vz =

(
νΩ̄

)1/2 [
H(ξ ) + ϸh̃(ξ, ω) exp(ωt)

] (2.142)
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After substitution of the velocity terms for their dimensionless counterparts in the
Navier-Stokes and continuity equations, we get:


2f̃ + h̃′ = 0

f̃ p + 2F f̃ − 2Gg̃ + Hf̃ ′ + F ′h̃ − f̃ ” = 0

g̃p + 2Gf̃ + 2Fg̃ + G′h̃ + Hg̃′ − g̃” = 0

(2.143)

Where p =
ω

Ω
represents a dimensionless frequency. In this development, we ne-

glected all quadratic terms (ϸ2) on the basis of linearity. The boundary conditions are:

h̃(0, p) = 0; f̃ (0, p) = 0; g̃(0, p) = 1

f̃ (ξ → ∞, p) = 0; g̃(ξ → ∞, p) = 0
(2.144)

To solve this system, Newman and Tribollet first separated real and imaginary compo-
nents (x̃ = x̃1 + x̃2), obtaining two new systems which could be solved using a numerical
method developed by Newman [55]:



2f̃1 + h̃′1 = 0

2f̃2 + h̃′2 = 0

−f̃2p + 2F f̃1 − 2Gg̃1 + Hf̃ ′1 + F ′h̃1 − f̃ ”1 = 0

f̃1p + 2F f̃2 − 2Gg̃2 + Hf̃ ′2 + F ′h̃2 − f̃ ”2 = 0

−g̃2p + 2Gf̃1 + 2Fg̃1 + G′h̃1 + Hg̃′1 − g̃1” = 0

g̃p1 + 2Gf̃2 + 2Fg̃2 + G′h̃2 + Hg̃′2 − g̃”2 = 0

(2.145)

With a new set of boundary conditions:

h̃1(0, p) = h̃2(0, p) = 0; f̃1(0, p) = f̃2(0, p) = 0; g̃1(0, p) = 1; g̃2(0, p) = 0

f̃1(ξ → ∞, p) = f̃2(ξ → ∞, p) = 0; g̃1(ξ → ∞, p) = g̃2(ξ → ∞, p) = 0
(2.146)

In order to have an analytic expression for the transient velocities, the authors used
power series to approximate these functions at distances close to the electrode surface.
After substitution of the series in the Navier-Stokes and continuity equations, we get:
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

f1(ξ, p) = f ′1(0, p)ξ − ξ 2 +

(
1.23184 − 2g′1(0, p) − pf ′2(0, p)

6

)
ξ 3

f2(ξ, p) = f ′2(0, p)ξ −
(
−2g′2(0, p) − pf ′1(0, p)

6

)
ξ 3

g1(ξ, p) = 1 + g′1(0, p)ξ +
(
1.02046 + 2f ′1(0, p) − pg′2(0, p)

6

)
ξ 3

g2(ξ, p) = g′2(0, p)ξ +
p

2
ξ 2 +

(
2f ′2(0, p) + pg′1(0, p)

6

)
ξ 3

h1(ξ, p) = −f ′1(0, p)ξ 2 +
2
3

h2(ξ, p) = −f ′2(0, p)ξ 2

(2.147)

The values for each p can, then, be calculated using numerical integration.

2.7.2 Unsteady concentration profile

To determine the effect of varying the rotation speed on the concentration profile, we
have to solve the transient mass conservation equation:

c(z, t) = c̄(z) + ∆c exp(ωt) (2.148)

vz(z, t) =
(
νΩ̄

)1/2 [
H(ξ ) + ϸh̃(ξ, p) exp(ωt)

]
(2.149)

∂c

∂t
= D

∂2c

∂z2 − vz
∂c

∂z
(2.150)

Tribollet and Newman proposed the following change of variables:

K =
ω

Ω̄

( 9ν

a2D

)1/3

, B =
( 3
a4

)1/3

, ξ =
z

δ
, δ =

(3D

aν

)1/3 ( ν

Ω̄

)1/2
(2.151)

When applied to the linearized convective-diffusion equation, we get:

d2∆c

dξ 2 +

(
3ξ 2 −

Bξ 3

Sc1/3
+ . . .

)
d∆c

dξ
− K∆c =

− ϸ

(
3

f̃ ′(0, p)
a

ξ 2 −
2B

Sc1/3
+ . . .

)
dc̄

dξ
(2.152)

To solve this equation, the authors used the method of separation of variables:
∆c(ξ ) = θ(ξ )λ(ξ ), θ(ξ ) being the solution to the homogeneous equation, which is the
same equation used to determine the diffusion impedance. Following the series develop-
ment introduced by Levart and Schuhmann [7], they expanded θ(ξ ) in powers of Sc−1/3:

θ(ξ, K, Sc) = θ0(ξ, K,∞) + θ1(ξ, K)Sc−1/3 + . . . (2.153)
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After solving the differential equations for θ0 and θ1, they tabulated the results for the
dimensionless diffusion impedance:

−
1

θ′(0)
= Z0 + Z1Sc−1/3 + . . . (2.154)

Going back to the convective-diffusion equation, we have:

d2λ

dξ 2 +

(
3ξ 2 −

Bξ 3

Sc1/3
+

2θ′

θ

)
dλ

dξ
= −ϸ

(
3

f̃ ′(0, p)
a

ξ 2 −
2Bξ 3

Sc1/3

)
1
θ

dc̄

dξ
(2.155)

Applying boundary equations ∆c(ξ = 0) = ∆c(0) and ∆c(ξ → ∞) = 0, the authors
find that:

d∆c

dz

∣∣∣∣∣
z=0
=
∆c(0)

δ
θ′(0) +

∆Ω

Ω̄

dc̄

dz

∣∣∣∣∣
z=0

W (2.156)

Where W =

∫ ∞

0

(
3

f̃ ′(0, p)
a

ξ 2 −
2B

Sc1/3
ξ 3 + . . .

)
θdξ is a quantity that was also tabulated

by the authors in the form of a series:

W = f̃ ′(0, p)(t1 + t2) +
1

Sc1/3

[
f̃ ′(0, p)(t3 + t4) + t5 + t6 . . .

]
(2.157)

t1 =
3
a

∫ ∞

0
ξ 2<{θ0}dξ t2 =

3
a

∫ ∞

0
ξ 2={θ0}dξ (2.158)

t3 =
3
a

∫ ∞

0
ξ 2<{θ1}dξ t4 =

3
a

∫ ∞

0
ξ 2={θ1}dξ (2.159)

t5 = −2B

∫ ∞

0
ξ 3<{θ0}dξ t6 = −2B

∫ ∞

0
ξ 3={θ0}dξ (2.160)

Where<{X } stands for the real part of X and ={X } for its imaginary part.
To derive the relationship between the electro-hydrodynamic impedance and the

electric quantities, we can use the same formalism presented for the electrochemical
impedance. We’ll take the case of a single electroactive species with no adsorption pro-
cesses: A + e–

−−−→ B

i = i(E, c(0))

∆i =
∂i

∂E

∣∣∣∣∣
c(0)
∆E +

∂i

∂c(0)

∣∣∣∣∣
E

∆c(0)

∆i =
1

Rct
∆E+

∆i

FD

δ

θ′(0)
∂i

∂c(0)

∣∣∣∣∣
E

−
∆Ω

Ω̄

ī

FD

δ

θ′(0)
W

∂i

∂c(0)

∣∣∣∣∣
E

∆E = Rct∆i −
Rct

FD

δ

θ′(0)
∂i

∂c(0)

∣∣∣∣∣
E

∆i +
∆Ω

Ω̄

Rct ī

FD

δ

θ′(0)
∂i

∂c(0)

∣∣∣∣∣
E

W (2.161)
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2.7.3 Potentiostatic control

Further assumptions may help to simplify equation 2.161. For instance, under poten-
tiostatic control, ∆E = 0 and assuming the charge transfer step is much faster than the
transport step, we get:

Rct �
Rct

FD

δ

θ′(0)
∂i

∂c(0)

∣∣∣∣∣
E

(2.162)

∆Ω

Ω̄

Rct ī

FD

δ

θ′(0)
∂i

∂c(0)

∣∣∣∣∣
E

W −
Rct

FD

δ

θ′(0)
∂i

∂c(0)

∣∣∣∣∣
E

∆i = 0 (2.163)

∆i

∆Ω
=

ī

Ω̄
W (2.164)

Such condition greatly simplifies the mathematical treatment and can be achieved by
conducting the experiment on the limiting current condition. There’s also an additional
advantage to this: it is not possible to conduct electrochemical impedance measurements
at the limiting current condition, because Zf → ∞ at the current plateau. Hence, the EHD
measurement can provide information about transient phenomena at regions previously
unexplored.

EHD impedance data are more commonly presented using Bode diagrams. Fig-
ure 2.11 presents the reduced amplitude and the phase shift as a function of dimensionless
frequency for a system described by equation 2.164.

(a) Reduced amplitude as a function of
dimensionless frequency

(b) −Phase as a function of dimension-
less frequency

Figure 2.11: Bode plots of the EHD impedance for a system with facile kinetics at the
limiting current condition
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2.7.4 Galvanostatic control

Although less common, it is also possible to investigate the EHD impedance under
galvanostatic control. In this case, ∆i = 0 and we have:

∆E

∆Ω
=

ī

Ω̄

Rct

FD

δ

θ′(0)
∂i

∂c(0)

∣∣∣∣∣
E

W (2.165)

The term
Rct

FD

δ

θ′(0)
∂i

∂c(0)

∣∣∣∣∣
E

, related to the diffusion impedance, cannot be simplified with-

out adding new hypotheses. Because of that, the EHD impedance under galvanostatic
control tends to be, in general, more complex than that obtained with potentiostatic con-
trol.

2.7.5 Application in the study of reaction mechanisms

Electro-hydrodynamic impedance is suited for the study of systems which are either
partially or totally controlled by mass transport phenomena [41]. It has been used, for in-
stance, to study the behaviour of partially blocked electrodes [68], coated electrodes [69],
dissolution mechanisms involving film formation, such as Cu in HCl solutions [70] and
the dissolution of Fe in sulphate solutions[14, 71]. Even though it is not as widely used
as the electrochemical impedance, which may be partly explained by the more laborious
mathematical treatment and the lack of marketed equipment specially designed for the
measurements, EHD impedance can certainly provide many valuable information about
the most different systems. Its capabilities are still under exploration and many advance
has been made during the last years [72]. As technology continues to advance, it may
prove to be a valuable asset in the uncovering of new scientific findings.

2.8 Any bricks left?

Throughout this chapter, an attempt was made to clarify several aspects which cannot
be taken for granted in the study of electrochemical systems. First, electrochemical reac-
tions are heterogeneous and involve a charge transfer between electrode and electrolyte
solution. This phenomenon creates a scenario in which several steps may participate to
a bigger or lesser extent in the determination of the reaction rate (measured in the form
of current). Also, the charge separation observed in the vicinities of the electrode surface
leads to the formation of an electrical double layer, whose presence must be accounted
for, since it influences the result of various experiments.

To understand the mechanism of electrochemical processes, we need to make use of
well-controlled systems which can provide reliable data and which have firm theoretical
basis. That led us to opt for the study of rotating disk electrode systems. However, steady
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state techniques are unable to provide enough information to describe most electrochem-
ical processes. We have, then, decided to complement our steady state measurements
with transient techniques based on the impedance concept. By disturbing an input signal,
whether it be the potential or the rotation speed, we can use the output data to develop
better models. Since these techniques are based on linear time-invariant theory, some
precautions regarding the experimental parameters are necessary. The combination of
electrical and non-electrical quantities provides a richer set of information that can be
used to understand the mechanisms affecting the mass transfer in the electrolyte solution.

Our road is paved and we may now move forward to the next topic: the discussion
about chemical-electrochemical processes and how they differ from the usual electro-
chemical reactions.
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Chapter 3

Literature review

3.1 Chemical-electrochemical processes

Chemical-electrochemical (CE) processes are those in which a chemical (bulk) reac-
tion precedes the electrochemical step. The simplest case would be:

A
kA
−−−⇀↽−−−

kB
B

A + e−
kh
−−−→ C

The most familiar example of this kind of reaction is the reduction of weak acids, such as
the acetic acid [12]: 

CH3COOH
k1
−−−⇀↽−−−

k2
CH3COO− + H+

H+ + e−
kh
−−−→ 1

2 H2

Because this multistep process includes a charge transfer, electrochemical methods are
natural candidates to study these reaction mechanisms. We may be interested, e.g., in
determining the values of the kinetic constants involved in the chemical step [73, 74]. Or,
we may want to predict the response of a system which is described by a CE mechanism.

As we’ve mentioned in subsection 2.4.9, the presence of homogeneous reactions
changes the concentration profile of the electroactive species. This is evidenced by the ad-
dition of a source term to the mass conservation equations. If studied with a RDE system,
we’d have:
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A
kA
−−−⇀↽−−−

kB
B

A + e−
kh
−−−→ C

∂cA

∂t
= DA

∂2cA

∂z2 − vz
∂cA

∂z
+ kBcB − kAcA

∂cB

∂t
= DB

∂2cB

∂z2 − vz
∂cB

∂z
− kBcB + kAcA

(3.1)

Despite the fact that species B is not electroactive, its concentration profile influences
that of species A. The system is, now, comprised of a set of two partial differential
equations which must be solved simultaneously.

3.1.1 Steady state current density

Koutecký and Levich were the first to provide an analytical treatment to this problem,
deriving an expression for the steady state current density in the case of equal diffusion
coefficients - DA = DB = D [3]. They were soon followed by Dogonadze, which extended
the results to the case of unequal diffusion coefficients [4].1 For the limiting current
condition, they arrived at the following expressions for the system displayed above:

iKL =
FD

(
cb

B + cb
A

)
δD + K

√
D

kA + kB

(3.2)

iDG =
FDeff

(
cb

B + cb
A

)
δeff + K

DA

DB

√
DADB

DBkA + DAkB

(3.3)

In these equations, iKL stands for the limiting current density derived by Koutecký and

Levich, iDG is the expression derived by Dogonadze, K =
kA

kB
and represents the equilib-

rium constant of the chemical reaction, Deff =
DBkA + DAkB

kA + kB
and δeff = δD

(
Deff

DA

)1/3

.

To get to these results, the authors had to introduce a new concept - and a new hy-
pothesis. Assuming that the chemical step is very fast, they proposed that the chemical
equilibrium would hold across the whole solution, except inside a small layer close to the
electrode surface - the reaction layer - where the consumption of species A would break
the equilibrium. The thickness of this layer, δR, is calculated as:

1Unfortunately, these articles are not easily available. For the interested reader, a derivation of these
results can be found in the work by Tolmachev and Scherson [75].
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For equal diffusion coefficients:

δR =

(
D

kA + kB

)1/2

(3.4)

For unequal diffusion coefficients:

δR =

(
DADB

DBkA + DAkB

)1/2

(3.5)

Also implied in this formulation is the fact that the reaction layer thickness must be
much smaller than the diffusion layer thickness: δR � δD.

These ideas were soon put to test by Vielstich and Jahn, who used the RDE system
to calculate the dissociation and recombination constants of acetic acid according to the
reaction layer theory. They reported good agreement between these results and those
obtained from measurements conducted with different techniques [73]. Inasmuch as it
can provide theoretical ground for the study of systems with fast kinetics, the reaction
layer hypothesis is unable to predict the extent of its validity, i.e., there’s no a priori way
of knowing if a given system meets its criteria. Also, the reaction layer hypothesis may
turn from valid to invalid for the same CE process. To understand this, we have to note
that the reaction layer hypothesis requires that - we’ll consider the general case of unequal
diffusion coefficients:

(
DADB

DBkA + DAkB

)1/2

︸                  ︷︷                  ︸
δR

�

√
ν

Ω

(
1.611Sc−1/3

A + 0.480Sc−2/3
A + 0.234Sc−1

A

)
︸                                                            ︷︷                                                            ︸

δD

(3.6)

Comparing both expressions, it is clear that, for a given solution, the value of δR is
constant. On the other hand, the value of δD will not be determined until we decide which
rotation speed to use. Hence, it is physically possible to have δR � δD valid for a given
set of rotation speeds, but, also, the opposite relation for another set of sufficiently high
values of Ω, because increasing Ω decreases the value of δD while not having any effect
on that of δR. We conclude that the reaction layer hypothesis will be more accurate the
lower the rotation speed. More importantly, the reaction layer hypothesis will always

fail to describe systems at sufficiently high rotation speeds. Evidently, these deviations
will not be observed for systems of extremely fast kinetics, such as the decomposition
of acetic acid [73, 74], or that of bisulfite, since the necessary rotating speed would be
either physically unattainable or lead to turbulent behaviour before the deviation could be
observed.

Aware of the limitations of the reaction layer approach, many authors have proposed
semi-analytical or numerical methods that would allow the calculation of the limiting cur-
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rent for any rotation speed. One of the early investigators was Hale, whose interest was in
determining the transient behaviour of a RDE system according to different experimental
arrangements and also in the presence of complicating bulk reactions (CE processes, for
example) [76, 77]. His method consisted of a change of variables used to "collapse" the
convection-diffusion equation into a new, "diffusion-like", one whose limits of integration
were finite. Starting with the original problem:

∂c

∂t
= D

∂2c

∂z2 − vz
∂c

∂z
; 0 ≤ z < ∞ (3.7)

The change of variables consists in the following:



u =
c

cb

x =
1
δD

∫ z

0
exp

(∫ z

0

vz

D
dz

)
dz

Ψ =
Dt

δD
2

(3.8)

Thus, the final equation, according to the author, would be:

∂u

∂Ψ
= a2 ∂2u

∂x2 ; 0 ≤ x < 1 (3.9)

Where a = exp
(
2
∫ z

0
vz

D dz
)
.

Years later, the Compton group would adopt the same procedure, which they called
"Hale Transformation", to numerically solve the diffusion-convection equation for many
processes, including the CE with unequal diffusion coefficients [5, 6]. The authors found
good agreement between their calculations and the analytical equation when dealing with
fast kinetics, which was already expected and served as a validation of their procedure.
The authors, then, showed how their results, also expectedly, deviated from those pre-
dicted by the reaction layer hypothesis for ever slower kinetics.

However, Hale’s proposal implies a step which is neither discussed in his works nor
in those by the Compton group. To see this, let’s take a step-by-step approach to the Hale
transformation:

∂c

∂t
= D

∂2c

∂z2 − vz
∂c

∂z
(3.10)

Introducing u =
c

cb
and Ψ =

Dt

δD
2 :
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∂u

∂Ψ

D

δD
2 = D

∂2u

∂z2 − vz
∂c

∂z
(3.11)

Now, we introduce x =
1
δD

∫ z

0
exp

(∫ z

0

vz

D
dz

)
dz:

∂u

∂Ψ

D

δD
2 =

D

δD
2

∂2u

∂x2 exp
(
2
∫ z

0

vz

D
dz

)
−

vz

δD

∂u

∂x
exp

(∫ z

0

vz

D
dz

)
(3.12)

∂u

∂Ψ
= a2 ∂2u

∂x2 −
δDvza

D

∂u

∂x
(3.13)

Both Hale and the Compton group completely neglect the term
δDvza

D

∂u

∂x
without

ever mentioning why. This is, in fact, a simplification which excludes the contributions
of the convective term. Also, we cannot be sure whether the deviations of Compton et al.

results from the analytical expressions really represent a deviation from the reaction layer
hypothesis or if they are due to this approximation. Anyway, it is certain that a rigorous
approach to the behaviour of CE systems with slower kinetics is lacking.

3.1.2 Diffusion impedance

Contrary to the stationary current, no equations for the diffusion impedance of CE
processes in RDE systems are available. Levart and Schuhmann, when devising a series
expansion for the diffusion impedances, included the possibility of a preceding chemical
step [8]:

For the CE process: 
A

kA
−−−⇀↽−−−

kB
B

A −−−→ C + e−
(3.14)

Ze = ZD(ω) +
kA

kB
ZD(ω + kA + kB) (3.15)

Where Ze is the diffusion impedance for the CE process and ZD the diffusion
impedance without homogeneous reactions. The author’s approach was to reformulate
the equations using a complex frequency u whose real component would include the
chemical step rate constants:

u = χ + σ =
(1.25144)2Sc1/3

Ω
(kA + kB + ω) (3.16)

In doing so, they were able to develop the series expansions that have already been
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mentioned in the previous sections. Nonetheless, their calculations required all diffusion
coefficients to be equal. An interesting observation by the authors was that, for increas-
ing values of kA and kB, two loops were observed; one related to the usual convective-
diffusion impedance and the other to the homogeneous reaction, which the authors called
a "reaction impedance" (impédance de réaction) [8]. An example of this separation of the
diffusion impedance is presented in figure 3.1.

Figure 3.1: Nyquist plot of the reduced diffusion impedance as a function of reduced
frequency u for different values of K = kA/kB and χ (Sc = 1000): (1)K = 0.01, χ =
0.01; (2)K = 1, χ = 1;(3)K = 2, χ = 4; (4)K = 5, χ = 10; (5)K = 10, χ = 50. Adapted
from [8].

The existence of this reaction impedance had already been predicted by Gerischer
and Vetter, but only for the case of quiescent solutions [78]. Hence, Levart and Schuh-
mann were, indeed, the first to present diffusion impedances which considered the effect
of both convection and homogeneous reactions. More recently, Harding et al. developed
a finite-difference scheme to account for the case of unequal diffusion coefficients and
proposed a "modified Gerischer impedance" equation which could be used to fit the diffu-
sion impedance of CE processes in RDE systems [10]. However, the calculations involve
a boundary condition that seems to contradict one of their findings. For the following CE
process:


AB

kf
−−−⇀↽−−−

kb

A− + B+

B+ + e− −−−→ B
(3.17)

The authors decided to set as boundary condition:

∆cB+(0) = 1 (3.18)

In other words, the authors fixed the amplitude of concentration the reacting species
at the electrode surface. They went on to analyse the dimensionless diffusion impedance
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−1
δD,B+

 ∆cB+(0)
dcB+

dz

∣∣∣∣∣
z=0

 and concluded that it changes according to the potential applied. But, if

∆cB+ has no dependence on potential (neither the mass conservation of B+ nor the bound-
aries condition include this parameter) neither will its derivative. Hence, it is not possible

for
−1

δD,B+

 ∆cB+(0)
dcB+

dz

∣∣∣∣∣
z=0

 to vary with applied potential. The numerical model proposed by

Harding et al., although correct in its premises, does not seem to have been correctly
implemented.

3.1.3 Electro-hydrodynamical impedance

To our knowledge, only the work by Vandeputte et al. has addressed the EHD
impedance of CE processes [9]. Assuming equal diffusion coefficients, the authors have
modelled the following CE process:

A
kA
−−−⇀↽−−−

kB
B

A + e− −−−→ C
(3.19)

Due to the complexity of the equations, the authors used perturbations methods and,
when convenient, neglected higher order terms in their calculations. Good agreement
was found for their steady state current equation and the classical one by Koutecký and
Levich. The authors also reported good agreement between the analytical approximations
for electrochemical impedance and EHD impedance for cases of fast kinetics. Deviations
between numerical solutions and analytical expressions were as high as 13% for the cases
of slower kinetics at higher frequencies. Another complicating factor recognized by the
authors was the neglect of the Schmidt correction for the EHD calculations. It is clear
that the approximations are more suitable for systems which can be also described by the
asymptotic solutions of Koutecký and Levich.

Hence, the EHD impedance for slower kinetics and also a thorough assessment of
more general conditions (unequal diffusion coefficients, inclusion of the Schmidt cor-
rection) are topics still missing from the study of CE processes and would provide an
important contribution to a better understanding of them.

3.2 Midway along the road

In this section, we’ve detailed different approaches to study the response of CE pro-
cesses in RDE systems to both stationary and transient techniques. Some of them, like
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the works of Koutecký and Levich and Dogonadze, for steady state current, or Levart and
Schuhmann for diffusion impedance, make use of simplifications which limit their scope
of applicability. Following works have tried to put these ideas on more general terms, but
they present inconsistencies that make us question their validity and generality. There’s
still space for improvement.

With that in mind, we developed a numerical procedure to study these CE processes
on very general terms: no additional hypothesis have been added and accuracy is taken to
a high degree. By doing so, we find ourselves in a better position to make a broad study
of the effect of the physical parameters on both steady state and transient results. With the
knowledge we have gathered, we find ourselves midway along our journey: now that we
understand what we want to study, we need to explain how we are going to do it. This is
the goal of the next chapter.
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Chapter 4

Numerical methodology

4.1 Relevant equations

In this thesis, we analyse the following CE process:
A

kA
−−−⇀↽−−−

kB
B;

kA

kB
= K

A + e−
kh
−−−→ C

(4.1)

As mentioned in subsection 2.4.7, we consider the solution to have an excess of sup-
porting electrolyte and that physicochemical parameters, such as diffusion coefficients or
viscosity, do not vary with position or concentration. Also, the process occurs in a RDE
system. Thus, the general mass conservation equations are:

∂cA

∂t
= DA

∂2cA

∂z2 − vz
∂cA

∂z
+ kBcB − kAcA

∂cB

∂t
= DB

∂2cB

∂z2 − vz
∂cB

∂z
− kBcB + kAcA

(4.2)

The final format of the equations will depend on the kind of numerical experiment we are
conducting: steady state limiting current, diffusion impedance or electro-hydrodynamic
(EHD) impedance.
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4.1.1 Limiting current condition

For the case of the limiting current density (ilim), the equations simplify to:
DA

d2cA

dz2 − vz
dcA

dz
+ kBcB − kAcA = 0

DB
d2cB

dz2 − vz
dcB

dz
− kBcB + kAcA = 0

(4.3)

With the following boundary conditions:
cA(0) = 0

cA(z → ∞) = cb
A

FDA
dcA

dz

∣∣∣∣∣
z=0
= ilim


dcB

dz

∣∣∣∣∣
z=0
= 0

cB(z → ∞) = cb
B = Kcb

A

(4.4)

Now, we introduce the change of variables suggested by von Kárman:

ξ =

√
ν

Ω
z (4.5)

Also, we’ll replace vz by the dimensionless velocity H(ξ ):

vz(z) = (νΩ)1/2 H(ξ ) (4.6)

The set of equations, then, becomes:

d2cA

dξ 2 − ScAH(ξ )
dcA

dξ
+

ScA

Ω
(kBcB − kAcA) = 0

d2cB

dξ 2 − ScBH(ξ )
dcB

dξ
+

ScB

Ω
(kAcA − kBcB) = 0

(4.7)

And the new boundary conditions are:

cA(0) = 0

cA(ξ → ∞) = cb
A


dcB

dξ

∣∣∣∣∣
ξ=0
= 0

cB(ξ → ∞) = cb
B = Kcb

A

(4.8)

The limiting current density is given by:

ilim = FDA

(
Ω

ν

)1/2 dcA

dξ

∣∣∣∣∣
ξ=0

(4.9)
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4.1.2 Diffusion impedance

To deal with the diffusion impedance, we consider that the a linear potential pertur-
bation is applied to the RDE. As a consequence, we have modulated responses for both
concentration and current density:

DA
d2∆cA

dz2 − vz
d∆cA

dz
+ kB∆cB − kA∆cA = ω∆cA

DB
d2∆cB

dz2 − vz
d∆cB

dz
− kB∆cB + kA∆cA = ω∆cB

(4.10)

To determine the boundary conditions for species A without setting arbitrary values,
we made use of the following equality:

∆ (FkhcA(0)) = ∆
(
FDA

dcA

dz

∣∣∣∣∣
z=0

)
(4.11)

khbh c̄A(0)∆E + kh∆cA(0) = DA
d∆cA

dz

∣∣∣∣∣
z=0

(4.12)

∆cA(0) =
DA

kh

d∆cA

dz

∣∣∣∣∣
z=0
− bh c̄A(0)∆E (4.13)

In its present format, this boundary condition would hardly be of any use, but we’ll
show how we can isolate the surface concentration term after we apply the discretization
procedure. Apart from this, he other boundary conditions retain the same aspect:

∆cA(0) =
DA

kh

d∆cA

dz

∣∣∣∣∣
z=0
− bh c̄A(0)∆E

∆cA(z → ∞) = 0

FDA
d∆cA

dz

∣∣∣∣∣
z=0
= ∆i


d∆cB

dz

∣∣∣∣∣
z=0
= 0

∆cB(z → ∞) = 0
(4.14)

Like the former case, we introduce the new variables and get a new set of equations:

d2∆cA

dξ 2 − ScAH(ξ )
d∆cA

dξ
+

ScA

Ω
[kB∆cB − (kA + ω)∆cA] = 0

d2∆cB

dξ 2 − ScBH(ξ )
d∆cB

dξ
+

ScB

Ω
[kA∆cA − (kB + ω)∆cB] = 0

(4.15)
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And, also, of boundary conditions:

∆cA(0) =
DA

kh

(
Ω

ν

)1/2 d∆cA

dξ

∣∣∣∣∣
ξ=0
− bh c̄A(0)∆E

∆cA(ξ → ∞) = 0

FDA

(
Ω

ν

)1/2 d∆cA

dξ

∣∣∣∣∣
ξ=0
= ∆i


d∆cB

dξ

∣∣∣∣∣
ξ=0
= 0

∆cB(ξ → ∞) = 0
(4.16)

In this thesis, we’ll calculate the diffusion impedance as:

ZD = −FDA
∆cA(0)
∆i

= −
∆cA(0)(

Ω

ν

)1/2 d∆cA

dξ

∣∣∣∣∣
ξ=0

(4.17)

4.1.3 Electro-hydrodynamic impedance

The EHD impedance is a generalization of the diffusion impedance in which the per-
turbation is applied in the rotation speed. In this situation, the equations are:

DA
d2∆cA

dz2 − vz
d∆cA

dz
− ∆vz

dc̄A

dz
+ kB∆cB − kA∆cA = ω∆cA

DB
d2∆cB

dz2 − vz
d∆cB

dz
− ∆vz

dc̄B

dz
+ kA∆cA − kB∆cB = ω∆cB

(4.18)

As for the boundary conditions, they’re almost the same as those of the diffusion
impedance, the difference being that we are under potentiostatic control, hence, there is
no potential oscillation (∆E = 0).

∆cA(0) =
DA

kh

d∆cA

dz

∣∣∣∣∣
z=0

∆cA(z → ∞) = 0

FDA
d∆cA

dz

∣∣∣∣∣
z=0
= ∆i


d∆cB

dz

∣∣∣∣∣
z=0
= 0

∆cB(z → ∞) = 0
(4.19)

Proceeding to the change of variables, we can also replace the modulated axial veloc-
ity by a dimensionless velocity:

∆vz(z, ω) = ϸh̃(z, ω) (4.20)
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The resulting equations are:

d2∆cA

dξ 2 − ScAH(ξ )
d∆cA

dξ
+

ScA

Ω̄
[kB∆cB − (kA + ω)∆cA] = −ScAϸh̃(ξ, ω)

dc̄A

dξ

d2∆cB

dξ 2 − ScBH(ξ )
d∆cB

dξ
+

ScB

Ω̄
[kA∆cA − (kB + ω)∆cB] = −ScBϸh̃(ξ, ω)

dc̄B

dξ

(4.21)

And the boundary conditions:

∆cA(0) =
DA

kh

(
Ω̄

ν

)1/2 d∆cA

dξ

∣∣∣∣∣
ξ=0

∆cA(ξ → ∞) = 0

FDA

(
Ω̄

ν

)1/2 d∆cA

dξ

∣∣∣∣∣
ξ=0
= ∆i


d∆cB

dξ

∣∣∣∣∣
ξ=0
= 0

∆cB(ξ → ∞) = 0
(4.22)

In this thesis, we’ll deal exclusively with the potentiostatic EHD impedance, calcu-
lated as:

ZEHD =
∆i

∆Ω
=

FDA

(
Ω̄

ν

)1/2 d∆cA

dξ

∣∣∣∣∣
ξ=0

ϸΩ̄
(4.23)

The value of ϸ is set to 0.1, which is in agreement with experimental practice and has
been found to keep the system within linear behaviour. However, because the equations
already assume linearity holds, any value for ϸ would provide the same results.

4.2 Discretization procedure

We used the finite difference method to discretize all governing equations and their
boundary conditions. This numerical method consists in discretizing the functions domain
and substituting the derivatives for combinations of numerical values of the functions [79].
This can be accomplished, for instance, by using Taylor expansions. Suppose we have a
discretized domain with regular spacing ∆x between nodes. Then, a Taylor expansion
around any node can be expressed as:

f (x0+∆x) = f (x0)+
df (x)

dx

∣∣∣∣∣
x0

∆x +
1
2!

d2f (x)
dx2

∣∣∣∣∣∣
x0

∆x2+ · · ·+
1
n!

dnf (x)
dxn

∣∣∣∣∣
x0

∆xn . . . (4.24)

If we neglect terms of order higher than 2, we can rewrite this equation as:

df (x)
dx

∣∣∣∣∣
x0

=
f (x0 + ∆x) − f (x0)

∆x
+ O(∆x) (4.25)
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The term O(∆x) is the approximation order and indicates that the error introduced by
truncating the expansion after the first derivative is of order ∆x . Now, the derivative at
point x0 can be written in a discretized fashion:

df (x)
dx

∣∣∣∣∣
x0

≈
f (x0 + ∆x) − f (x0)

∆x
(4.26)

It is clear that the derivative will be more accurate as we make ∆x → 0. However, a
grid that is too small will require much more nodes to cover the entire function domain.
Consequently, a compromise must be made between the derivative approximation and the
number of nodes used. Because of that, using approximations of higher orders becomes
preferable: the accuracy of a scheme of order O(∆x4) will increase much faster than that
of a scheme of order O(∆x), saving much computational time and memory. Therefore, it
is always advantageous to work with approximations of the higher possible order that do
not add too much complexity to the numerical calculations.

4.2.1 Linear grids

When all nodes are equally spaced, we have a linear grid regularly spaced. In our
discretization, we divided our domain in N nodes, such that i = 0 represents the boundary
condition at the electrode/electrolyte interface and i = N + 1 represents the boundary
condition at the solution bulk. Inside the grid (for nodes i = 1 up to i = N), derivatives
were approximated using central differences of second order.

Limiting current condition

The linearized equations for the limiting current condition are:

For 1 ≤i ≤N : (
2 + ∆ξScAH i

2∆ξ 2

)
ci−1

A −

(
2Ω + ScAkA∆ξ 2

Ω∆ξ 2

)
ci

A (4.27)

+

(
2 − ∆ξScAH i

2∆ξ 2

)
ci+1

A =
−ScAkBci

B

Ω
(4.28)(

2 + ∆ξScBH i

2∆ξ 2

)
ci−1

B −

(
2Ω + ScBkB∆ξ 2

Ω∆ξ 2

)
ci

B (4.29)

+

(
2 − ∆ξScBH i

2∆ξ 2

)
ci+1

B =
−ScBkAci

A

Ω
(4.30)

As for the boundary conditions, we have:

c0
A = 0

cN+1
A = cb

A

c0
B =

4c1
B − c2

B

3
cN+1

B = KeqcN+1
A

(4.31)
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Notice that the boundary condition for species B at the electrode surface is a simple
rearrangement of the non-discretized equation. Using forward differences of second order,
we have [80]:

dcB

dξ

∣∣∣∣∣
ξ=0
=
−3c0

B + 4c1
B − c2

B

2∆ξ
= 0 (4.32)

c0
B =

4c1
B − c2

B

3
(4.33)

Thus, the discretized equation for the limiting current density is:

ilim = FDA

(
Ω

ν

)1/2 (
2c1

A − 0.5c2
A − 1.5c0

A

∆ξ

)
(4.34)

Diffusion impedance

To discretize the equations of diffusion impedance and EHD impedance, we found it
better to separate the real part from the imaginary part. Hence, a set of two equations
became a set of four equations:

For 1 ≤i ≤N :

For the real part of ∆cA = ∆cA,R(
2 + ∆ξScAH i

2∆ξ 2

)
∆ci−1

A,R −

(
2Ω + ScAkA∆ξ 2

Ω∆ξ 2

)
∆ci

A,R

+

(
2 − ∆ξScAH i

2∆ξ 2

)
∆ci+1

A,R = −
ScA

Ω

(
kB∆ci

B,R + ScAω∆ci
A,I

)
(4.35)

For the imaginary part of ∆cA = ∆cA,I(
2 + ∆ξScAH i

2∆ξ 2

)
∆ci−1

A,I −

(
2Ω + ScAkA∆ξ 2

Ω∆ξ 2

)
∆ci

A,I

+

(
2 − ∆ξScAH i

2∆ξ 2

)
∆ci+1

A,I = −
ScA

Ω

(
kB∆ci

B,I − ScAω∆ci
A,R

)
(4.36)

For the real part of ∆cB = ∆cB,R(
2 + ∆ξScBH i

2∆ξ 2

)
∆ci−1

B,R −

(
2Ω + ScBkB∆ξ 2

Ω∆ξ 2

)
∆ci

B,R

+

(
2 − ∆ξScBH i

2∆ξ 2

)
∆ci+1

B,R = −
ScB

Ω

(
kA∆ci

A,R + ScBω∆ci
B,I

)
(4.37)

For the imaginary part of ∆cB = ∆cB,I(
2 + ∆ξScBH i

2∆ξ 2

)
∆ci−1

B,I −

(
2Ω + ScBkB∆ξ 2

Ω∆ξ 2

)
∆ci

B,I

+

(
2 − ∆ξScBH i

2∆ξ 2

)
∆ci+1

B,I = −
ScB

Ω

(
kA∆ci

A,I − ScBω∆ci
B,R

)
(4.38)

60



The boundary conditions for the new equations are:
∆c0

A,R =
DA

√
Ω
ν

∆ξ


2∆c1

A,R − 0.5∆c2
A,R − bhkh c̄A(0)∆E

kh +
3

2∆ξ
DA

√
Ω

ν


∆cN+1

A,R = 0

∆c0
A,I =

4c1
A,I − c2

A,I

3
∆cN+1

A,I = 0

(4.39)∆c0
B,R =

4c1
B,R − c2

B,R

3
∆cN+1

B,R = 0

∆c0
B,I =

4c1
B,I − c2

B,I

3
∆cN+1

B,I = 0

(4.40)

To understand the boundary condition for ∆c0
A,R, we go back to the equation mentioned

in subsection 4.1.2:

∆cA(0) =
DA

kh

d∆cA

dz

∣∣∣∣∣
z=0
− bh c̄A(0)∆E (4.41)

After discretization, this equation becomes:

∆c0
A,R =

DA

kh

√
Ω

ν

(
4∆c1

A,R − 3∆c0
A,R − ∆c2

A,R

)
2∆ξ

− bhc0
A∆E (4.42)

Rearranging this equation gives us the form presented in the boundary condition. Note
that, in order to calculate the value of ∆c0

A,R, we need to know the steady state concentra-
tion of A at the surface. Hence, the diffusion impedance calculation requires a previous
determination of the stationary concentration profile.

The discretized equation for the ZD is given by:

ZD = −FDA
∆cA(0)
∆i

(4.43)

ZD = −

√
ν∆c0

A,R∆ξ
√
Ω

[
2∆c1

A,R − 0.5∆c2
A,R − 1.5∆c0

A,R + 
(
2∆c1

A,I − 0.5∆c2
A,I − 1.5∆c0

A,I

)] (4.44)

Electro-hydrodynamic impedance

The discretized equations for the case of electro-hydrodynamic impedance are similar
to those of the diffusion impedance:

For 1 ≤i ≤N :
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For the real part of ∆cA = ∆cA,R(
2 + ∆ξScAH i

2∆ξ 2

)
∆ci−1

A,R −

(
2Ω̄ + ScAkA∆ξ 2

Ω̄∆ξ 2

)
∆ci

A,R +

(
2 − ∆ξScAH i

2∆ξ 2

)
∆ci+1

A,R =

= −ScA

(
kB

Ω̄
∆ci

B,R + ScA
ω

Ω̄
∆ci

A,I − ϸh̃R
dc̄A

dξ

)
(4.45)

For the imaginary part of ∆cA = ∆cA,I(
2 + ∆ξScAH i

2∆ξ 2

)
∆ci−1

A,I −

(
2Ω̄ + ScAkA∆ξ 2

Ω̄∆ξ 2

)
∆ci

A,I +

(
2 − ∆ξScAH i

2∆ξ 2

)
∆ci+1

A,I =

= −ScA

(
−

kB

Ω̄
∆ci

B,I − ScA
ω

Ω̄
∆ci

A,R − ϸh̃I
dc̄A

dξ

)
(4.46)

For the real part of ∆cB = ∆cB,R(
2 + ∆ξScBH i

2∆ξ 2

)
∆ci−1

B,R −

(
2Ω̄ + ScBkB∆ξ 2

Ω̄∆ξ 2

)
∆ci

B,R +

(
2 − ∆ξScBH i

2∆ξ 2

)
∆ci+1

B,R =

= −ScB

(
kA

Ω̄
∆ci

A,R + ScB
ω

Ω̄
∆ci

B,I − ϸh̃R
dc̄B

dξ

)
(4.47)

For the imaginary part of ∆cB = ∆cB,I(
2 + ∆ξScBH i

2∆ξ 2

)
∆ci−1

B,I −

(
2Ω̄ + ScBkB∆ξ 2

Ω̄∆ξ 2

)
∆ci

B,I +

(
2 − ∆ξScBH i

2∆ξ 2

)
∆ci+1

B,I =

= −ScB

(
−

kA

Ω̄
∆ci

A,I − ScB
ω

Ω̄
∆ci

B,R − ϸh̃I
dc̄B

dξ

)
(4.48)

The terms h̃R and h̃I identify the real and the imaginary components of the modulated
dimensionless velocity h̃.

The boundary conditions for this case are:
∆c0

A,R =
DA

√
Ω̄
ν

∆ξ


2∆c1

A,R − 0.5∆c2
A,R

kh +
3

2∆ξ
DA

√
Ω̄

ν


∆cN+1

A,R = 0

∆c0
A,I =

4c1
A,I − c2

A,I

3
∆cN+1

A,I = 0
(4.49)

∆c0
B,R =

4c1
B,R − c2

B,R

3
∆cN+1

B,R = 0

∆c0
B,I =

4c1
B,I − c2

B,I

3
∆cN+1

B,I = 0
(4.50)

Finally, the discretized equation for ZEHD is:

ZEHD =
∆i

∆Ω
(4.51)

ZEHD =
FDA

∆ξ∆Ω

(
Ω̄

ν

)1/2 [
2∆c1

A,R − 0.5∆c2
A,R − 1.5∆c0

A,R + 
(
2∆c1

A,I − 0.5∆c2
A,I − 1.5∆c0

A,I

)]
(4.52)
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4.2.2 Nonlinear grids

Studying CE processes with a linear grid may is troublesome when the chemical step
becomes too fast. As the values of the kinetic constants increase, the reaction layer gets
thinner and most of the concentration gradient is confined within a few nodes from the
electrode surface. On the other hand, most boundary conditions require the grid to extend
up to the solution bulk. If we had to use a linear grid, the value of ∆ξ would have to be
very small in order to account for the concentration changes near the electrode. However,
because of the need to get to the solution bulk, it would also be necessary to have a huge
amount of nodes. It is clear that it would become impractical to use linear grids to study
ever-faster processes.

One way of circumventing this problem is using nonlinear grids. For instance, using
an exponential grid allows the distance between nodes to increase along the domain:

∆ξi = ∆ξ1γ i−1 (4.53)

Where ∆ξ1 stands for the first spacing between nodes and γ is the stretching parameter
[81].

With a suitable choice of γ, it is possible to have sufficient nodes close to the electrode
surface and, then, having the grid extend at a faster pace to reach the solution bulk. This
approach is successfully used to work with systems whose changes occur mainly in a
very small region of the whole domain. Because the values of ∆ξ vary along the grid,
the discretized equations are different from those of linear grids, which assume a constant
value. Hence, the coefficients used to calculate the derivatives have to be previously
computed for each choice of parameters. For example, the second derivative calculated
with three terms would be written as:

d2X

dy2 = δi−1X i−1 + δiX
i + δi+1X i+1 (4.54)

The computation of the coefficients is performed according to the algorithm developed
by Fornberg, which applies for grids of any kind and also allows the choice of the order
of the approximation[80]. Britz and Strutwolf wrote a routine in Fortran90 implementing
the algorithm, which was adapted for our purposes [81].

Limiting current condition

The equations for the steady state in an exponential grid are:
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For 1 ≤i ≤N :

(δi−1 − H i�i−1ScA) ci−1
A −

(
δi − H i�iScA −

ScAkA

Ω

)
ci

A (4.55)

+ (δi+1 − H i�i+1ScA) ci+1
A =

−ScAkBci
B

Ω
(4.56)

(δi−1 − H i�i−1ScB) ci−1
B −

(
δi − H i�iScB −

ScBkB

Ω

)
ci

B (4.57)

+ (δi+1 − H i�i+1ScB) ci+1
B =

−ScBkAci
A

Ω
(4.58)

Where �i represents the coefficients used to calculate the first derivative and δi , the
coefficients used to calculate the second derivative.

Diffusion impedance

In the case of diffusion impedance, we have:

For 1 ≤i ≤N :

For the real part of ∆cA = ∆cA,R

(δi−1 − H i�i−1ScA)∆ci−1
A,R −

(
δi − H i�iScA −

ScAkA

Ω

)
∆ci

A,R (4.59)

+ (δi+1 − H i�i+1ScA)∆ci+1
A,R = −ScA

(
kBci

B,R

Ω
+

ω∆cA,I

Ω

)
(4.60)

For imaginary real part of ∆cA = ∆cA,I

(δi−1 − H i�i−1ScA)∆ci−1
A,I −

(
δi − H i�iScA −

ScAkA

Ω

)
∆ci

A,I (4.61)

+ (δi+1 − H i�i+1ScA)∆ci+1
A,I = −ScA

(
kBci

B,R

Ω
−

ω∆cA,R

Ω

)
(4.62)

For the real part of ∆cB = ∆cB,R

(δi−1 − H i�i−1ScB)∆ci−1
B,R −

(
δi − H i�iScB −

ScBkB

Ω

)
∆ci

B,R (4.63)

+ (δi+1 − H i�i+1ScB)∆ci+1
B,R = −ScB

(
kAci

A,R

Ω
+

ω∆cB,I

Ω

)
(4.64)

For imaginary real part of ∆cB = ∆cB,I

(δi−1 − H i�i−1ScB)∆ci−1
B,I −

(
δi − H i�iScB −

ScBkB

Ω

)
∆ci

B,I (4.65)

+ (δi+1 − H i�i+1ScB)∆ci+1
B,I = −ScB

(
kAci

A,R

Ω
−

ω∆cB,R

Ω

)
(4.66)

Electro-hydrodynamic impedance

Finally, for the EHD impedance, we have:

For 1 ≤i ≤N :
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For the real part of ∆cA = ∆cA,R

(δi−1 − H i�i−1ScA)∆ci−1
A,R −

(
δi − H i�iScA −

ScAkA

Ω̄

)
∆ci

A,R (4.67)

+ (δi+1 − H i�i+1ScA)∆ci+1
A,R = −ScA

(
kBci

B,R

Ω̄
+

ω∆cA,I

Ω̄
− ϸh̃R

dc̄A

dξ

)
(4.68)

For imaginary real part of ∆cA = ∆cA,I

(δi−1 − H i�i−1ScA)∆ci−1
A,I −

(
δi − H i�iScA −

ScAkA

Ω̄

)
∆ci

A,I (4.69)

+ (δi+1 − H i�i+1ScA)∆ci+1
A,I = −ScA

(
kBci

B,R

Ω̄
−

ω∆cA,R

Ω̄
− ϸh̃I

dc̄A

dξ

)
(4.70)

For the real part of ∆cB = ∆cB,R

(δi−1 − H i�i−1ScB)∆ci−1
B,R −

(
δi − H i�iScB −

ScBkB

Ω̄

)
∆ci

B,R (4.71)

+ (δi+1 − H i�i+1ScB)∆ci+1
B,R = −ScB

(
kAci

A,R

Ω̄
+

ω∆cB,I

Ω̄
− ϸh̃R

dc̄B

dξ

)
(4.72)

For imaginary real part of ∆cB = ∆cB,I

(δi−1 − H i�i−1ScB)∆ci−1
B,I −

(
δi − H i�iScB −

ScBkB

Ω̄

)
∆ci

B,I (4.73)

+ (δi+1 − H i�i+1ScB)∆ci+1
B,I = −ScB

(
kAci

A,R

Ω̄
−

ω∆cB,R

Ω̄
− ϸh̃R

dc̄B

dξ

)
(4.74)

The boundary conditions for all measurements are identical to those used for linear
grids. This is acceptable, even in the case of derivatives, because the first values of ∆ξi are
very close to each other and assuming them to be constant and equal to ∆ξ1 was found to
be an accurate approximation. Hence, we could also use the same discretized equations
of ilim , ZD and ZEHD to determine their values in simulations with exponential grids.

4.3 Solution procedure

After disretization, the set of differential equations becomes a set of N algebraic equa-
tions. We purposedly decided to use three-point approximations to generate a tridiagonal
matrix, which is solved using the Thomas algorithm [79, 81]. An initial guess is necessary
for both concentration profiles, but it does not require any accuracy. The equations are
solved iteratively until they meet the stopping criterion, which requires that the maximum
difference between successive iterations for all nodes be smaller than 10−16.

To determine the domain size necessary to meet the conditions at the solution bulk, we
have to let the solution naturally converge to the boundary conditions. A trial-and-error
procedure showed that a grid size equals to three times the largest diffusion layer thickness
was sufficiently far from the electrode surface to be considered "infinitely away".

For linear grids, the grid spacing is set to max
{3δD,A

N
;
3δD,B

N

}
. In the case of nonlinear

grids, we designed two scenarios:
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• If
(
3

δD,A/B

N
<

δR

ζ

)
, ζ being an adjustable parameter, typically, between 20 and 103,

we set ∆ξ1 =
3δD,A/B

N
, because this condition is sufficient to provide enough accu-

racy near the electrode surface.

• Otherwise, we set ∆ξ1 =
δR

ζ
to make sure that enough nodes are present in the

region of major concentration changes. The value of the stretching parameter, γ, is
chosen via trial-and-error to create a grid of size close to 3δD,A/B.

The dimensionless axial velocity is calculated with power series expansion valid for
ξ -values close to the electrode surface. Our calculations use the first three terms to assure
a higher accuracy:

H(ξ ) = −0.51023ξ 2 +
ξ 3

3
−

0.615922
6

ξ 3 (4.75)

This series fits the actual axial velocity profile with enough precision up to ξ ≈ 1.
Since our choice of parameters led to maximum grid size ξmax ≤ 1, the errors due to the
truncation of series after the third term are negligible. As for h̃, we used values tabulated
by Barcia for different dimensionless frequencies p =

ω

Ω
[14].

Even though the system of equations is linear, the coupling imposed by the boundary
conditions in the calculations of the diffusion and the EHD impedances made it necessary
to introduce a relaxation factor, Θ:

X i = ΘX i + (1 − Θ)X i−1 (4.76)

This factor is used to avoid abrupt adjustments of the concentrations after each iter-
ation, which can cause instabilities and divergence of the procedure. The optimal value
for Θ depends on the frequency, so our strategy was to set Θ = 1 at the beginning of each
step. If divergence is detected, Θ is multiplied by 0.9 and a new solution is attempted.
This prevents the persistence of very small Θ values for subsequent frequencies, which
often leads to an unnecessary increase of computational time.

4.3.1 Simulation parameters

Our investigation can be divided into two categories: steady state and transient state

simulations. For each case, different parameters were varied to assess their effects on ilim ,
ZD and ZEHD.

Steady state measurements

We used fixed values for the kinematic viscosity (ν = 10−6 m2s−1) and for the diffu-
sion coefficients of both species (DA = 9 10−9 m2s−1 and DB = 2 10−9 m2s−1). They were
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chosen among those typically reported in the literature for aqueous solutions [74, 82]. The
rotation speed varied between 0.1 and 50 Hz and the different combinations of kA/kB val-
ues used are presented in table 4.1. Our main interest here is in evaluating the effect of
the homogeneous reactions on the limiting current density.

Table 4.1: Kinetic constants used in the steady state simulations

kA (s−1) kB (s−1) K
Slow kinetics

5 5 1
5 5 10−1 10
5 5 10−2 100

Fast kinetics
5 102 5 102 1
5 103 5 102 10
5 104 5 10−2 100

1.5 105 3 5 104

Transient measurements

The complexity of the impedance data requires a broader study of the impact of differ-
ent parameters. Hence, we decided to vary not only the kinetic constants and the rotation
speed, but also the diffusion coefficients of both A and B, i.e., their Schmidt numbers. The
combinations of values are presented in table 4.2.
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Table 4.2: Combinations of parameters used in the transient simulations

Ω (Hz) ScA ScB kA/kB (s−1)
Effect of the rotation speed

Slow Fast
1

111.11 500 5 / 0.5 5 103 / 5 1025
10
50

Effect of ScA

Slow Fast

10
111.11

500 5 / 0.5 5 103 / 5 102250
500

Effect of ScB

Slow Fast

10 500
111.11

5 / 0.5 5 103 / 5 102333.33
500

Effect of kA/kB

Slow Fast

10 111.11 500
5 / 0.5 5 / 100
5 / 5 100 / 100
50 / 5 500 / 100

4.4 Validation procedure

To validate our numerical procedure, we compared our results to well-established
models in the literature. Because these models are not as general as ours, so they should
be seen as limiting cases we expect to see if the physical parameters comply to particular
considerations. Nonetheless, not being able to fit them would already point out a failure
in our calculations, so this inspection is an important step.

For the steady state, we calculated ilim for a system with very sluggish homogeneous
reactions, whose response tends to that of a system without bulk reactions. These values
were compared with those obtained by a numerical procedure which does not account for
chemical reactions and also with analytical values obtained from the Levich equation [1].
Results are presented in figure 4.1, showing excellent agreement. We see that, in fact, the
results from the procedure which includes the homogeneous reactions approaches those
obtained from the numerical one without bulk reactions and the analytical values from the
Levich equation.

In the case of diffusion impedance, we compared our results with those by Levart and
Schuhmann [8]. The simplification required for this case was the use of equal diffusion
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Figure 4.1: Comparison between ilim values calculated according to different procedures
as a function of Ω1/2

coefficients for species A and B. Once again, complete superposition between data was
observed (see figure 4.2).

Figure 4.2: Nyquist plot for the diffusion impedance calculated according to our model
and that of Levart and Schuhmann. (ScA = ScB = 500, kA = 5 s−1, kB = 10−2 s−1)

Finally, the EHD impedance was validated by comparison with results by Tribollet
and Newman, whose model does not include bulk reactions [55]. Accordingly, very small
chemical rate constants were used to emulate a system with no homogeneous reactions.
Like the previous cases, results presented in figure 4.3 show very good agreement.

Now that our procedures have been tested against existing models and proved accu-
rate, we proceed to our investigation of what these same models cannot show us. Re-
member: they are only approximations of our model, which means that there is much to
explore beyond their results.
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Figure 4.3: Comparison of reduced amplitude and -phase as a function of reduced fre-
quency between our model and that of Tribollet and Newman (ScA = ScB = 1000,
kA = 5 10 − 8 s−1, kB = 5 10−5 s−1)

4.5 Almost there

When we started our journey, we were led primarily by our intuition: we knew where
we wanted to get, but we didn’t know exactly which paths to take. As we gathered infor-
mation and our knowledge accrued, we saw what had been done and what could be done.
At that point, we were finally able to take our conceptual map and trace our own route

towards our destination, which is presented in this chapter.
Because of the coupling effect due to the homogeneous reactions, an analytical solu-

tion for that set of differential equations that govern CE processes has only been obtained
through approximations. Instead of trying to achieve a general solution, we decided to use
numerical procedures to tackle the equations, a short-cut which also has its challenges.
That’s why we had to improve our simulations by incorporating exponential grids that
allow us to work with a wider range of values for the physical parameters of interest. This
is how we decided to build our road.

By no means, we claim that it is the only possible road to take. But it is our road;
built after rigorous analysis of different options and careful discussion about their costs
and outcomes. We invite the reader to catch his/her breath and stay alongside us: after all,
we’re almost there.
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Chapter 5

Results and discussion

5.1 Steady state

5.1.1 Fast kinetics

Figure 5.1 shows the limiting current density as a function of Ω1/2 for different com-
binations of reaction rate constants. An excellent agreement is found between our calcu-
lations and the Dogonadze equation, which attests that reaction rate constants of 102 s−1

already are high enough to assure the validity of the reaction layer hypothesis.

Figure 5.1: ilim vs Ω1/2 for systems with fast kinetics: a) K = 1; b) K = 10; c)K = 100;
d) K = 5 104.
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This can also be confirmed by looking at the inverse of the equilibrium quotient,
CA/CB, as a function of the axial distance. According to the reaction layer hypothe-
sis, chemical equilibrium should be attained at the vicinities of the electrode surface - a
distance much smaller than the diffusion layer thickness. Figure 5.2 illustrates this point.
For all cases, chemical equilibrium (i.e., the CA/CB = Cb

A/Cb
B) is attained at distances at

least one order of magnitude smaller than δD.

Figure 5.2: Normalized values of CA/CB as a function of ξ .

It should also be noticed that, even for very high reaction rate constants, there will
always be deviations between approximate and exact solutions. If the rotation speed is
sufficiently high, the condition δD � δR will no longer be valid. Figure 5.3 shows the
divergence between our calculations and the Dogonadze equation when Ω → ∞. To see
this more clearly, we can analyse what happens to the Dogonadze equation when we take
the limit Ω→ ∞:

lim
Ω→∞

iDG = lim
Ω→∞

FDeff

(
cb

B + cb
A

)
δeff + K DA

DB

√
DADB

DBkA+DAkB

(5.1)

lim
Ω→∞

iDG =
FDeff

(
cb

B + cb
A

)
K DA

DB

√
DADB

DBkA+DAkB

(5.2)

It is clear that the limiting current approaches a constant value, since it assumes that
δR will always be smaller than δD and, hence, that the concentration gradient will be
controlled by the homogeneous reactions instead of the convective-diffusive transport.
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However, if we take the same limit of the original equations, we get different results:
lim
Ω→∞

d2cA

dξ 2 − ScAH(ξ )
dcA

dξ
+
����������:0
ScA

Ω
(kBcB − kAcA)

 =
d2cA

dξ 2 − ScAH(ξ )
dcA

dξ

lim
Ω→∞

d2cB

dξ 2 − ScBH(ξ )
dcB

dξ
+
����������:0
ScB

Ω
(kAcA − kBcB)

 =
d2cB

dξ 2 − ScBH(ξ )
dcB

dξ

(5.3)

Hence: 
d2cA

dξ 2 − ScAH(ξ )
dcA

dξ
= 0

d2cB

dξ 2 − ScBH(ξ )
dcB

dξ
= 0

(5.4)

Notice that the limit for infinite rotation speed is equal to that of the absence of bulk
reactions. This means that, for very high Ω, the limiting current will be described by
the Levich equation, which increases with Ω1/2. Therefore, it never reaches a constant
value. This transition takes place when the diffusion layer thickness becomes smaller
than the reaction layer thickness and convection-diffusion transport regains control of the
concentration gradient. This is not observed in the reaction layer hypothesis, since it
presupposes that δR will always be much smaller than δD. Evidently, the rotation speeds
required to spot the divergence in our example cannot be achieved experimentally, so the
approximation δD � δR is very accurate for the systems presented. This may, indeed, be
used as a practical definition of a system with fast kinetics: one for which, given a set of
experimental data, the reaction layer hypothesis is valid.

Figure 5.3: Divergence between numerical solution and the Dogonadze equation for very
high rotation speeds.

Finally, contrary to the Levich equation, the Dogonadze equation is not described
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by a linear function of Ω1/2. However, depending on the rotation speed range and the
parameters used, we may observe what seems to be a linear function. For instance, if we
try to fit the data in graphs 5.1 a) and b) with a straight line crossing the origin, we find
R2 > 0.99 for both cases. This indicates that the linearity of the ilim vs Ω1/2 graph is
not sufficient to conclude that the electrochemical system under study does not involve
chemical reactions and further evidence must be collected to support such claim.

An immediate consequence of this non-linearity is in the analysis of (ilim)−1 vs Ω−1/2

graphs. Let’s look, for example, at figure 5.4. The graph presents a straight line, which is
accordance with the classical Levich theory, and its extrapolation towards Ω−1/2 = 0 in-
tercepts the ordinate axis at ≈ 4.6 10−4 A−1 m2. This observation could be attributed, e.g.,
to a parallel reaction, because one would expect the intersection at the limiting current to
be very close to zero. But if we expand the rotation speed range, as shown in figure 5.4b,
we find a sharp change in slope and what we see is that the curve does tend towards the
origin. Therefore, the initial extrapolation has no clear physical meaning. This is another
reminder that we must always confirm the validity of our hypotheses (in this case, that
the system has no bulk reactions) before using them to interpret parameters obtained by
manipulation of experimental data.

(a) Smaller Ω−1/2 range suggesting linear
behaviour.

(b) BroaderΩ−1/2 range displaying the non-
linearity of the curve.

Figure 5.4: (ilim)−1 vs Ω−1/2 graphs for different ranges of rotation speed.

We conclude this subsection by noting that the reaction layer hypothesis provides
a very suitable approach to deal with systems with fast kinetics, since its predictions
agree satisfactorily with the exact solutions. However, we must bear in mind that it is

an approximation and, thus, it is limited to a domain which assures the validity of its
premises. We must also be aware that a linear behaviour of the ilim vsΩ1/2 graph does not
necessarily imply a simple charge transfer system.
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5.1.2 Slow kinetics

The plots for systems with slow kinetics, presented in figure 5.5, show large deviations
between the exact and approximate solutions within an experimentally accessible rotation
speed range. As we have pointed out, the separation between fast and slow kinetics is de-
termined by the possibility of fitting the Dogonadze limiting current to the data. Also, we
see that, even for the reaction rate constants used, an overlap for smaller rotation speeds
occurs. This is no coincidence: because δD becomes larger for smaller Ω values, there
will always be a sufficiently small rotation speed past which the reaction layer hypothe-
sis becomes valid. However, that may not always be observable in practice due to both
experimental and theoretical reasons. In the former case, very small rotation speeds may
not be achievable with the experimental apparatus. As for the latter, the main equations
used to derive these results assume that the hydrodynamic layer thickness is much smaller
than the electrode radius and, since δ0 = f (Ω−1/2), a minimum rotation speed is required
to make sure the system will behave accordingly [2].

Figure 5.5: ilim vs Ω1/2 for a system with slow kinetics: a) K = 1; b) K = 10; c) K = 100.

It is clear that the equilibrium constant itself has no prediction power over the limiting
current behaviour of any system. Comparing figures 5.1 and 5.5, we conclude that the
absolute values of the reaction rate constants are much more determining than K . For
instance, in the case of K = 1, figure 5.6 shows that the system with slow kinetics diverges
from the Dogonadze equation at much smaller Ω values than that with fast kinetics.
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5.1.3 Comparison with literature data

We also compared our calculations with values reported in the literature. Compton et

al. proposed a numerical procedure which, according to the authors, could be applied to
any combination of reaction rate constants and diffusion coefficients [6]. In this article,
the authors report that the limiting current density (using our terminology) is given by:

ilim = 1.554neff D
2/3
A F (Cb

A + Cb
B)ν−1/6Ω1/2 (5.5)

Where neff is termed the ’effective number of electrons transferred’ [6]. Table 5.1 presents
neff calculated by the authors for different combinations of parameters.

Using the results reported by the authors, we calculated the corresponding limiting
current densities and plotted on a ilim vs Ω1/2 graph together with our calculations and
those of Dogonadze (see figure 5.7). Our calculations are in very good agreement with
the reaction layer hypothesis, while those of Compton et al. suggest the opposite, which
they explain by stating that, for the parameters used, the reaction layer hypothesis was no
longer valid. Nonetheless, the authors never actually showed any additional evidence to
support their claims: since their procedure was able to give correct calculations for fast
kinetics, they assumed that any divergence for slower kinetics was a result of the invalidity
of the reaction layer hypothesis under these new circumstances.

Table 5.1: neff values reported by Compton et al. for different sets of parameters [6].
(DA = 4 10−9 m2s−l , DB = 1 10−9 m2s−l , ν = 10−6 m2s−l , K = 102)

kA (s−1) Ω (Hz) neff

10 5 0.2085
8 4 0.2075
6 3 0.2087
2 1 0.2077
1 0.5 0.2074

0.5 0.25 0.2088

To check whether or not the reaction layer hypothesis holds, we analysed the system
which presented the greatest disparity between our results and those of Compton et al. -
kB = 1000 and Ω = 5 Hz. Figure 5.8 shows the CA/CB profile along the axial distance.
There is no doubt that equilibrium is attained at distances much smaller than δD. Indeed,
the δR/δD ratio is about 1.63 10−2, i.e., the reaction layer thickness represents less than
2% of the diffusion layer thickness. Under these conditions, it is highly unlikely that
a correct calculation would depart from the Dogonadze limiting current by more than
100%.

76



Figure 5.6: ilim vs Ω1/2 for systems with K = 1 and different kA/kB values.

Figure 5.7: ilim vs Ω1/2 for systems with K = 1 and different kA/kB values.

A possible reason for the lack of accuracy of the Compton procedure is in the change
of variables which they use to simplify their equations and which we have already pointed
out as being flawed (see the final remarks in 3.1.1). To make things more convenient, we
will briefly review their procedure. It is based on the work by Hale [76, 77], who starts
with the original convection-diffusion equation:

∂C

∂t
= D

∂2C

∂z2 − vz
∂C

∂z
(5.6)
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Figure 5.8: CA/CB vs ξ for system expected to fail the reaction layer hypothesis according
to Compton et al.[6]. (DA = 4 10−9 m2s−l , DB = 1 10−9 m2s−l , ν = 10−6 m2s−l)

Then, he performs a change to dimensionless variables:
u = C/Cb

y = 1
δD

∫ z

0 exp
[∫ z

0
vz

D dz
]

dz

θ = Dt/δ2
D

(5.7)

Given that δD =

∫ ∞

0
exp

[∫ z

0

vz

D
dz

]
dz , Hale concludes that the new convection-

diffusion equation is:
∂u

∂θ
= a2 ∂2u

∂y2 (5.8)

Where a2 = exp
(
2
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D dz
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. But that is not correct at all. To see this, let’s perform the
change of variables step-by-step:
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∂u

∂θ
= a2 ∂2u

∂y2 −
vzδDa

D

∂u

∂z︸        ︷︷        ︸
Absent from the original papers

(5.11)

In his papers, Hale does not explain why he decided to neglect the term vzδDa
∂u

∂z
and,
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in fact, there is no reasonable argument to do this at all. Hence, his procedure is, at best, an
approximation of the set of equations which must be used to determine the concentration
profiles. Since Compton et al. employ the same transformation in their work, this is one
of the reasons for the divergences between our results and theirs: contrary to their claims,
their calculations do not solve the exact system of equations, only an approximate one.
On the other hand, ours does not invoke any additional assumptions and is able to work
with any combination of parameters.

5.2 Transient state

5.2.1 Effect of the rotation speed

Changes in the rotation speed improve the convective transport of species, but they
have no direct effect on phenomena linked to bulk reactions. This is what we see in
figure 5.9: the convection-diffusion loop, with lower characteristic frequency, gets smaller
with increasing rotation speed and its own characteristic frequency increases too. On the
other hand, the reaction impedance loop, with higher characteristic frequency, remains
relatively unaltered (both in phase and in modulus) up to Ω = 10 Hz. As the frequency
spectra of both loops start to overlap, convective-diffusive effects have greater impact on
the concentration gradient and, consequently, on the overall impedance. This is why, at
some point, the loops merge and start decreasing as a whole for increasing Ω values.

Further analysis shows that, although the separation between reaction and convection-
diffusion loops does correlate with the δR/δD ratio, it is a much less sensitive tool to
judge the validity of the reaction layer hypothesis than, e.g., the analysis of concentration
profiles or of the limiting current densities. For Ω = 1 Hz, we have clear separation
between loops and δR/δD ≈ 9.84%, with very good agreement between ilim and iDG -
deviations around 1%. However, although the loops forΩ = 5 Hz also are visibly distinct,
δR/δD ≈ 22% and the divergence between ilim and iDG becomes more discernible (see
figure 5.5). For Ω = 10 Hz, when we get to see a slight change at the reaction loop,
δR/δD ≈ 31% and the reaction layer hypothesis clearly is no longer applicable. This is
also confirmed by the larger disparity between our calculations and those of Dogonadze
(which apply the reaction layer hypothesis) at the ilim vs Ω1/2 graph. Finally, for Ω = 50
Hz, δR/δD ≈ 70%, i.e., they have the same order of magnitude and comparable impact on
the concentration profile. Also, the characteristic frequency of the diffusion-convection
loop is now of order 100Hz. This explains the merging between loops and progressive
control of the convection-diffusion term over the diffusion impedance.

Besides the fact that the characteristic frequency of the lower frequency loop depends
on the rotation speed, another evidence that this loop corresponds to the convection-
diffusion term is given by figure 5.10. It displays the Nyquist plot for systems whose pa-
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Figure 5.9: Nyquist plot of ZD for system with slow kinetics at different rotation speeds.

rameters are equal to those presented in figure 5.9, except for the reaction rate constants,
which are negligible in latter case. Hence, what we see is a pure convection-diffusion
impedance. Comparing both results, we observe that the lower frequency loops in fig-
ure 5.9 are at the same frequency range as the convection-diffusion loops in figure 5.10.
Also, it is clear that both loops have the same dependency on the rotation speed value.
Therefore, we feel safe to conclude that the low frequency loops are, indeed, linked to
convective-diffusive effects.

Figure 5.10: Nyquist plot of ZD for system whose parameters are equal to those in fig-
ure 5.9, but in the absence of homogeneous reactions.

Nyquist plots for ZD when the kinetics are fast are similar in shape to those for slow
kinetics (see figure 5.11). But, in this case, the characteristic frequency of the reaction
loop is much higher (≈ 1.5 kHz) than that of the convection-diffusion one and the ro-
tation speed range employed is not enough to cause them to overlap. Comparing the
different kinetic regimes, we also observe that the characteristic frequencies of reaction
and convection-diffusion impedances are independent of each other. For equal rotation
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speeds, the convection-diffusion impedance has the same characteristic frequency regard-
less of the chemical rate constants. As for the reaction impedance, its characteristic fre-
quency seems to depend on the absolute value of the reaction rate constants (and, hence,
on δR), but not on Ω.

Figure 5.11: Nyquist plot of ZD for system with fast kinetics at different rotation speeds:
a) General overview highlighting the convection-diffusion loop. b) Zoom at the high
frequency region which displays the reaction loop.

Systems with fast kinetics provide a better case for inferring the applicability of the
reaction layer hypothesis based on the separation of the diffusion impedance loops. In this
scenario, there is no overlap whatsoever between both loops , even for the higher rotation
speed employed. Also, the δR/δD ratio varies from 0.31% to 2.2%, a range in which the
reaction layer hypothesis can be safely applied. Because the characteristic frequencies
of the convection-diffusion and the reaction impedance depend on the thickness of the
corresponding layers, a complete separation between loops can be used as a evidence that
δR � δD and, thus, that we can apply the reaction layer hypothesis. As these frequencies
get closer and the loops start interacting, we get to the point in which applying the reaction
layer hypothesis is no longer possible. Nonetheless, it is important to emphasize that,
based on our results for slow kinetics, there is no need for a complete overlap between
both impedances for the invalidity of the hypothesis.

Based on our suspicion of the link between the characteristic frequency of the reaction
impedance f ∗R and the reaction layer thickness, we decided to plot one against the other and
check for a functional dependency. The log-log plot presented in figure 5.12 was obtained
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by measuring f ∗R for systems whose value of kA increased by factors of 2 (starting with
kA = 5 s−1) while holding every other parameter constant. The fitting procedure clearly
shows that f ∗R = F(δ−2

R ), confirming that increasing f ∗R can be correctly interpreted as
causing δR to decrease.

Figure 5.12: Log-log plot of the reaction impedance characteristic frequency as a function
of the reaction layer thickness (ScA = 111.11, ScB = 500, Ω = 1 Hz, kB = 5 10−1 s−1).

We can also observe that, for fast kinetics, the reaction loop would most likely not
be experimentally observable, because its frequency spectrum is in the same range as
that of the double-layer relaxation. Thus, the overall impedance would not display both
loops and additional information would be required to identify the presence of homo-
geneous reactions. Figure 5.13 illustrates this point by showing the Nyquist plot of the
overall impedance of the same system presented in figure 5.11. Notice that the reaction
impedance loop, with characteristic frequency circa 1.3 kHz, is no longer discernible,
because it overlaps with the loop generated from the coupling between the double layer
capacitance and charge transfer resistance. Hence, even though we know, theoretically,
that a reaction loop is to be observed for CE mechanisms, we might not be able to iden-
tify it in experimental data. In other words, by having to rely on the electrochemical
impedance alone, we risk not having access to critical information regarding the com-
plete reaction mechanism. Thus, it is important to have ancillary measurements which
can help us identify these reaction steps.

This complementary information can be provided by EHD impedance measurements.
Figures 5.14 and 5.15 show that the graphs for reduced amplitude and negative phase for
different rotation speeds do not overlap, which contrasts with the behaviour of systems
with no bulk reaction, for which overlap is expected to occur.

Although these modified Bode plots reveal important changes in the ZEHD patterns,
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Figure 5.13: Nyquist plot of the overall impedance of a system with fast kinetics (Param-
eters are equal to those of the system presented in figure 5.11)

Figure 5.14: Reduced amplitude and negative phase as a function of dimensionless fre-
quency for system with slow kinetics at different rotation speeds.

Figure 5.15: Reduced amplitude and negative phase as a function of dimensionless fre-
quency for system with fast kinetics at different rotation speeds.
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there are better ways to investigate the degree of overlap between convection-diffusion
and reaction impedance loops. Because of that, we decided to also investigate the Nyquist
plots for both kinetic regimes, which are presented in figure 5.16. In both cases, the pre-
vailing loop has a characteristic frequency which depends on the rotation speed, being
readily identifiable with convection-diffusion phenomena. However, even for fast kinet-
ics, the loop for the reaction impedance is not clearly discernible even if the effects the
reaction has on the impedance are quite evident. Hence, the main correlation we find
is between the convection-diffusion characteristic frequency, f ∗D , and Ω, which can be
restated as: f ∗D = F(δ−2

D ), since δD ∝ Ω
−1/2.

(a) Nyquist plot of ZEHD for system with fast kinetics.

(b) Nyquist plot of ZEHD for system with slow kinetics.

Figure 5.16: Nyquist plot of ZEHD for different rotation speeds.

We see, then, that combining both electrochemical and electro-hydrodynamic
impedance measurements is useful in identifying the presence of additional phenomena
in the system - and the total exclusion of the mechanism corresponding to that of a sim-
ple electron transfer without complications. We have also observed that, for increasing
reaction rate constants, the mismatch between curves for different rotation speeds be-
comes less pronounced. Since this is one way of identifying more complex mechanisms,
it would be interesting to have supplementary methods for distinguishing them. An al-

84



ternative procedure is the analysis of the negative phase for higher p values. Figure 5.17
shows A(p)/A(0) vs p for two systems with equal Schmidt numbers, but with one differ-
ence: in one of them, there are no homogeneous reactions. The shape of both reduced
amplitude plots is very similar and, at a first glance, does not provide evidence of a more
complex mechanism. Nonetheless, the superior limit of the negative phase is remarkably
different from the 180◦ value expected for simpler systems. This observation allows us to
conclude that the reaction mechanism must be more complex than that of a single electron
transfer.

Figure 5.17: Comparison of reduced amplitude and negative phase for systems with equal
Schmidt numbers (of the electroactive species) in the presence and in the absence of
homogeneous reactions.

Overall, we see that the rotation speed has a straightforward effect on both ZD and
ZEHD, because it has an explicit impact on the concentration gradient. Increasing Ω re-
duces the magnitude of both impedances and increases their associated characteristic
frequencies, which leads to an overlapping of reaction and convection-diffusion in the
diffusion impedance. This, and the fact that we can only measure the overall impedance,
points out to the importance of combining different techniques in order to assess the re-
action mechanism of an electrochemical process. In this case, we have shown that EHD
impedance can assist us in this task.

5.2.2 Effect of the equilibrium constant

To measure the effect of reaction rate constants, we kept kB constant and varied kA,
i.e., we varied the equilibrium constant. As mentioned before, the equilibrium constant
has no direct connection to the shape of the impedance curves, so we still had to discern
between systems with slow kinetics and systems with fast kinetics.

As shown in figure 5.18, systems with lower K values have higher ZD magnitudes,
but smaller contributions from the reaction impedance. This means that the homogeneous

85



reactions play a smaller role in determining the concentration profile of the electroactive
species in systems with lower equilibrium constants.

Figure 5.18: Nyquist plots for the diffusion impedance of systems with a) fast and b) slow
kinetics for different combinations of kA and kB. (Ω = 10 Hz; ScA = 111.11; ScB = 500)

Why would that be? First, we must notice that, since K is low, then Cb
B/Cb

A is also low.
Because we keep Cb

A fixed at 1 mol m−3, Cb
B = Keq. Also, remember that Cb

B is the higher

concentration value of B in solution, because at any other point it will be consumed to
replenish the A species consumed at the electrode. Therefore, CB will have small values
throughout the solution and its impact on the concentration profile of the electroactive
species will be much smaller than that of convective-diffusive effects, which explains
why the overall diffusion impedance resembles the convection-diffusion impedance. To
confirm this, we compared the concentration profile of the electroactive species in the
absence of homogeneous reactions and in a system with K = 5 10−2. The graph, presented
in figure 5.19, shows that the presence of homogeneous reactions has no visible effect on
the concentration profile, i.e., the system behaves as if there were no bulk reactions at all.

Higher equilibrium constants have the opposite effect: they lead to smaller magni-
tudes and a more pronounced effect of the reaction impedance. Here, CB � CA and the
electroinactive species acts as an efficient buffer of the electroactive species. As a con-
sequence, the concentration profile of A is primarily determined by the kinetics of the
homogeneous reactions, which explains the development of the reaction loop. Besides
that, the electroactive concentration profile becomes much steeper near the electrode sur-
face due to the replenishments by species B. As a result, changes in CA(0) induce higher
concentration gradients and, thus, smaller ZD.

EHD results for different equilibrium constants (see figures 5.20 and 5.21) present
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Figure 5.19: Comparison of the concentration profile between a system without bulk
reactions and one with a low equilibrium constant.

the same trends outlined for the diffusion impedance: Lower values of K lead to reduced
amplitude and phase values closer to those of a system without homogeneous reactions.
As it increases, we notice that the reduced amplitude graphs bend downward, while the
phase goes upward - at least, up to a tipping point, in the case of slow kinetics.

Figure 5.20: Reduced amplitude and phase as a function of dimensionless frequency for
systems with slow kinetics and different equilibrium constants.

To have a better understanding of the equilibrium constant effects, we also investigated
the Nyquist plot of EHD data (see figure 5.22). For both slow and fast kinetics, the
increase of the equilibrium constant causes an increase of the EHD impedance magnitude
and of the characteristic frequency without having much influence on the shape of the plot.
We have already seen that increasing Keq produces steeper CA slopes near the electrode
surface, i.e., higher currents (both stationary and transient). Since ZEHD = ∆i/∆Ω, this
will also cause the ZEHD to increase.
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Figure 5.21: Reduced amplitude and phase as a function of dimensionless frequency for
systems with fast kinetics and different equilibrium constants.

Figure 5.22: Nyquist plot of ZEHD for systems with different equilibrium constants: a)
slow kinetics; b) fast kinetics.

5.2.3 Effect of ScA and ScB

Our simulations show that the impact of varying the Schmidt number depends on
whether it corresponds to the electroactive or to the electroinactive species. Differently
from the reaction rate constants, the effects of ScA and ScB can be assessed independently
and have very distinct effects, as we see below.

For a constant value of ScB, we observe that the diffusion impedance magnitude de-
creases for increasing values of ScA - see figure 5.23. Both impedance loops are affected
in the same proportion and the characteristic frequencies remain constant. At higher fre-
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quencies, the curves converge to the straight line representing the Warburg impedance
limit observed when ω → ∞.

Why does increasing ScA decreases the ZD magnitude? For a constant kinematic vis-
cosity, higher ScA is caused by smaller DA, i.e., a smaller mobility of A species in solution.
Inasmuch as a smaller mobility hinders the transport of A from the solution bulk to the

electrode surface, the surface CA gradient gets steeper and, consequently, ZD = −
∆CA(0)
d∆CA

dz

∣∣∣
z=0

gets smaller.

Figure 5.23: Nyquist plot of ZD for systems with ScA values: a) fast kinetics and b) slow
kinetics.

The same pattern is observed for the EHD impedance: the magnitude decreases for
increasing ScA values (see figure 5.24). Nevertheless, the reason for this is not the same

presented for the diffusion impedance. Indeed, because ZEHD = FDA

d∆CA

dz

∣∣∣
z=0

∆Ω
, we could

be lead to think that higher ScA should increase the EHD impedance magnitude, since
d∆CA

dz

∣∣∣
z=0 gets higher. However, in this situation, we must also consider the absolute value

of the diffusion coefficient and the calculations show that, even though systems with lower
DA (or higher ScA) have higher CA surface gradients, the actual current is still smaller than
that of systems with higher DA (or lower ScA). Also noticeable from the EHD plot is that,
for slow kinetics, a reaction impedance loop is observed at higher frequencies, which is
in agreement with the diffusion impedance.

The role played by ScB is very different, especially because it affects only CB directly.
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Figure 5.24: Nyquist plot of ZEHD for systems with ScA values: a) slow kinetics and b)
fast kinetics.

Figure 5.25 shows that increasing ScB increases the diffusion impedance, but it only en-
hances the convection-diffusion loop. This might be due to the fact that B can only re-
plenish A species and, in that case, a very high diffusion coefficient would be necessary to
interfere with higher frequency phenomena. A higher mobility of B species, i.e., a lower
ScB, allows a higher concentration build-up near the electrode surface, thus enhancing the
buffering effect. Therefore, we can expect steeper slopes for CA, which explains the lower
ZD magnitudes.
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Figure 5.25: Nyquist plot of ZD for systems with ScB values: a) fast kinetics and b) slow
kinetics.

The EHD impedance of systems with varying ScB values was found to be much more
complex. For instance, the effect of increasing ScB led to an increase in the ZEHD mag-
nitude for systems with slow kinetics, while the opposite trend was observed for systems
with fast kinetics (see figure 5.26). This result shows the considerable level of intricacy
of these systems and it cannot be ascribed to a single factor, being more likely due to a
combined effect of diffusion, convection and the homogeneous reactions. Figure 5.27 can
help us understand this transition. Comparing the ∆CB profile at ω = 0 for systems with
different ScB values, we see that, for slow kinetics, ∆CB(0) is higher for ScB = 500 than
for ScB = 111.11. Therefore, the buffer effect will be more pronounced for the former,
leading to a higher CA surface gradient and higher ZEHD magnitude. For fast kinetics, it
is the system with ScB = 111.11 that has the higher ∆CB(0), which explains the inverse
behaviour in the ZEHD plot.

There is a stark difference between changes in ScA and changes in ScB. The former is
directly linked to the electroactive species and, thus, has a direct effect on the concentra-
tion gradient. Increasing ScA steepens the concentration profile, because, in this situation,
it is the reflex of a decrease in the diffusion coefficient. Consequently, we have higher
concentration gradients at the electrode surface, but lower currents. Interpreting the effect
of ScB is much more complex, since it has no direct effect on the current. Indeed, the
availability of B species can only replenish the electroactive species, adding another com-
ponent to the complete behaviour of the concentration profile. This interplay of transport
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Figure 5.26: Nyquist plot of ZEHD for systems with ScB values: a) fast kinetics and b) slow
kinetics.

Figure 5.27: Transient concentration profiles of species B at ω = 0 Hz for systems with
different ScB values: a) slow kinetics and b) fast kinetics.

modes, involving diffusion, convection and the homogeneous reactions, is responsible for
the counterintuitive results obtained.
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5.2.4 Comparison with literature data

Diffusion impedance

We have already used the procedure developed by Levart and Schuhmann to validate
ours (see section 4.4), so we know that both models are equally capable of calculating the
diffusion impedance when the diffusion coefficients are equal.

To our knowledge, the work by Harding et al. is the only one presenting simulations
for systems with unequal diffusion coefficients [10]. Nevertheless, they employ a two-
step chemical reaction while we assume the homogeneous reaction only involves one
step. Hence, we cannot make a direct comparison between our calculation and theirs.
Still, we can use our procedure to verify one of their statements, namely that the diffusion
impedance of CE processes in RDE systems is potential-dependent.

Figure 5.28 compares two ZD plots obtained at different potentials. It is very clear
that the potential has no effect whatsoever on the diffusion impedance. These findings are
corroborated by Levart and Schuhmann’s method and there is no reason to believe that the
equality of diffusion coefficients would have any impact on this behaviour. As mentioned
in subsection 3.1.2, none of the hypotheses adopted in the model by Harding et al. lead to
a potential dependency of ZD and our results prove that, indeed, such dependency does not
exist. Hence, we believe that there must be an error in the numerical procedure developed
by these authors.

Figure 5.28: Nyquist plot comparing ZD values for two different potentials. (ScA =

111.11, ScB = 500, Ω = 10 Hz, kA = 5 s−1, kB = 5 s−1, k0 = 10−1 m s−1, b = 15
V−1)

Electro-hydrodynamic impedance

The only literature data available for EHD simulations of CE processes in RDE sys-
tems is due to Vandeputte et al. [9]. However, as explained in subsection 3.1.3, their
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analytical model, besides using perturbation methods (which are, themselves approxima-
tive), assumes equal diffusion coefficients (DA = DB = D) and infinite Schmidt numbers.
For these reasons, they cannot be taken as quantitative references, but as qualitative ones.

Figures 5.29 - 5.31 show the comparison between their results and ours for different
values of two parameters the authors presented in their article, (α and σ). In our nomen-
clature, they correspond to:

α =
(kA + kB) δ2

D

D
(5.12)

σ = kA/kB = K (5.13)

The Bode plots show a very good agreement for lower frequencies and divergence for
higher frequencies. This disparity between analytical and numerical values had already
been mentioned by the authors in their article. When compared with direct numerical
integration, the analytical values for higher frequencies showed considerable deviation.
Hence, this disparity with our data should not be seen as a warning sign for possible
errors. Instead, what we see is a very good qualitative agreement in which the curves
generated by both procedures follow the same trends. We take this as evidence that our
procedure is both correct and more accurate, since we do take into account the Schmidt
corrections the authors have neglected.

Figure 5.29: Reduced amplitude and negative phase as a function of pSc1/3 for systems
with σ = 100 and α = 100.
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Figure 5.30: Reduced amplitude and negative phase as a function of pSc1/3 for systems
with σ = 100 and α = 10.

Figure 5.31: Reduced amplitude and negative phase as a function of pSc1/3 for systems
with σ = 100 and α = 5.

5.3 Here, at last

Finally, we arrive at our destination. The road we built is now behind us: each brick,
a piece of knowledge. Almost all of the bricks were lent to us by the researchers who
devoted their efforts to the study of electrochemistry. Because of them, we were able
to keep walking, using their ideas to develop our own. We have been able to produce

something new.
In this chapter, we presented the results obtained for new numerical procedures to

solve the exact equations for chemical-electrochemical processes in rotating disk elec-
trode systems. Both steady and transient state simulations were validated and confronted
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with data from the literature, which we have shown to be less accurate than ours (or even
wrong). The influence of different parameters was evaluated and explained in terms of
their effects on the concentration profiles that, ultimately, determine the quantities studied
in this thesis (ilim , ZD and ZEHD).

Not all bricks in this road belong to others. At the end of the road, at the very last
step, there’s an empty space. It must be filled with a different brick, made of our own
knowledge. As we fit the last piece in, we look back on the road and think of what we
have accomplished.
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Chapter 6

Conclusions

During the course of this thesis, we have presented new results concerning the be-
haviour of chemical-electrochemical reactions when studied with the help of a rotating
disk electrode. Our particular intention was to extend the knowledge of these systems by
examining conditions which cannot be modelled according to the reaction layer hypoth-
esis. To do so, we employed numerical methods to solve the exact differential equations.
This allowed us to investigate both steady state and transient responses; the former by
means of the limiting current density and, the latter, by analysing the diffusion and the
electro-hydrodynamic impedance.

Regarding steady state phenomena, we showed that the reaction layer hypothesis will
always fail to describe systems with arbitrarily large rotating speeds, because it assumes
the condition δR � δD holds for the whole range of rotation speeds. However, we have
proved that, for any system, we can always find a value ofΩ past which this will no longer
be true. Also, we have shown that every system obeys the equations derived from this
hypothesis for sufficiently small rotating speeds. Combining these findings, we suggest
that the classification of a kinetic regime as fast or slow is merely an operational one:
any system which can be modelled according to the reaction layer hypothesis throughout
the whole rotation speed experimentally employed can be regarded as fast. Otherwise, it
shall be labelled as slow. Finally, our model was shown to be more accurate than the one
devised by Compton et al., which also attempts to solve the relevant exact equations, but,
contrary to our model, fails to fit the Dogonadze equation under conditions in which the
reaction layer hypothesis is still valid.

As for transient phenomena, our investigation was divided in three topics. The first
one concerns the effect of the rotation speed. We have found that the impact of Ω is very
different for the two components of the diffusion impedance of CE systems; namely, the
reaction impedance and the convection-diffusion impedance. As long as the frequency
range of these two impedances remain sufficiently apart, only the latter will respond to
changes in the rotation speed, both in its magnitude, that will decrease, and its characteris-
tic frequency, which will increase, because it is a function of δ−2

D . However, as the rotation
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speed is increased, both loops will start to merge, because convective-diffusive effects will
start to dominate the concentration profile, which will also be reflected on the diffusion
impedance. This observation is corroborated by our finding that the characteristic fre-
quency of the reaction loop depends on δ−2

R . Hence, for smaller Ω values, δR � δD and
the loops will not overlap. Because only δD depends on Ω, the increase in rotation speed
only affects the convection-diffusion impedance. When the frequency range of both loops
reach the same order of magnitude, δD ∼ δR and convection-diffusion becomes the major
mass-transport mechanism. In this respect, electro-hydrodynamic impedance presents a
rather distinct picture: for all conditions studied, convection-diffusion dominates the re-
sponse. Nevertheless, it can still be used to help identify the presence of homogeneous
reactions in a qualitative manner. For instance, the limit of the negative phase for higher
p values for the CE systems studied always differed from the expected 180◦ value ob-
served for systems without reactions. Experimentally, this can be used as evidence that
additional reaction steps take place in the overall electrochemical process.

The second effect evaluated with transient analysis was that of the reaction rate con-
stants, which relate to that of the equilibrium constant, for kB was held constant. We
observed that increasing kA (i.e., increasing K) causes the magnitudes of ZD to decrease
and that of ZEHD to increase. Both observations are due to the same phenomenon: a
steepening of the concentration profile of the electroactive species at the vicinities of the
electrode surface, resulting in higher gradients and current densities. This behaviour is
explained by the faster consumption of electroactive species in the chemical step.

The final aspect concerned the effect of the Schmidt numbers (for constant kinematic
viscosity) on impedance response. With respect to the electroactive species, we have
found hat higher Schmidt numbers lead to smaller diffusion and electro-hydrodynamic
impedances. The former decreases in magnitude because the increment in ScA is caused
by lowering DA. This hinders the replenishment of A species close to the electrode
surface, leading to higher concentration gradients and lower ZD. As for the electro-
hydrodynamic impedance, we noticed that, although the concentration gradient increases,
the overall current for lower DA is smaller. Hence, ZEHD magnitudes decrease too. The
effect of ScB is more complex. When increased, it leads to higher diffusion impedance
by increasing the convection-diffusion loop. This can be explained by the lower mobility
of B species, which lessens their buffer effect on the concentration of the electroactive
species and reduces the concentration gradient. ZEHD response, though, does not follow
the same pattern: its magnitude decreases with increasing ScB for slow kinetics and fol-
lows an inverse trend for fast kinetics. In this case, we were not able to single out a major
factor contributing to this behaviour, which is, most likely, due to a combined effect of
convection, diffusion and the bulk reactions.

When compared to other transient models available in the literature, our diffusion
impedance did not show any dependence on the potential applied, unlike the model by
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Harding et al.. The fact that other diffusion models, such as the one by Levart and Schuh-
mann, also do not have a potential dependency corroborates our observations. Insofar
as possible, we also compared our ZEHD results with available models and found very
good qualitative agreement, which was seen as positive since the other models are only
approximate solutions.

6.1 Time to move on

Perhaps we should have warned the reader before we began: this has never really
been about the destination, but about the journey. Sure, it feels great to have arrived here
after all we’ve been through, but why stop? Looking in retrospect, we see that, while we
have accomplished our goals, new questions and challenges have arisen. Why not pursue
them?

So, what’s next? Some of the possibilities are:

• Work on a semi-analytical approach to solve the exact convection-diffusion-
reaction equations.

• Extend the model to more complex CE mechanisms, including higher-order reac-
tions and kinetic complications at the electrode surface.

• Extend the model to different mechanisms, such as EC, ECE and EC’.

Everything is packed and we’re ready to go. What about you, dear reader? Will you
join us?
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Appendix A

Mass conservation

In this section, we present a brief proof of equation 2.4, which describes the mass
conservation of species in a fluid [23]:

∂ci

∂t
=

−∑
i

∇ · Ji

 + Ri (A.1)

First, consider a control volume,V , fixed in space and simply connected. A fluid
with velocity field v, measured with respect to an arbitrary inertial frame, and with molar
concentration of species i ci flows through this volume. Also, let S be the external surface
of V and n be the unit vector perpendicular to S and oriented outwards. The accumulation
rate of species i within the control volume (measured in mol) over a period of time will
be given by: ∫

V

∂ci

∂t
dV =

∮
S

(−Ji · n) dS +

∫
V

RidV (A.2)

What this equation states is that any change on the net amount of i within V over
a period of time is either due to a non-zero net concentration flux (represented by∮

S
(−Ji · n) dS) or the generation/consumption of i within the volume (represented by∫

V
RidV ). For the flux to contribute to any change in the value of ci , it must be oriented

outwards S, therefore only the term Ji ·n is taken into account. Also, since this integration
calculates the amount of i leaving V , we take the negative value to correctly calculate the
amount added to V .

We now proceed to apply the Gauss’s theorem, which states that:∮
S

(Ji · n) dS =

∫
V

(∇ · Ji) dV (A.3)

Thus, equation A.2 becomes:∫
V

∂ci

∂t
dV = −

∫
V

(∇ · Ji) dV +

∫
V

RidV (A.4)
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And, after rearrangement:∫
V

(
∂ci

∂t
+ ∇ · Ji − Ri

)
dV = 0 (A.5)

Since this result must hold for any V , we get:

∂ci

∂t
+ ∇ · Ji − Ri = 0 (A.6)

∂ci

∂t
= −∇ · Ji + Ri (A.7)
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Appendix B

Terminal velocity of ions in solution

In this section, we derive the expression for the terminal velocity of an ion moving
under a potential gradient in solution (equation 2.7) [19]:

v̄i =
ziFχ

κηNARi
(B.1)

As a first approximation, we consider the ion to behave as a sphere, so that the drag force

due to the viscosity of the solution can be calculated according to a version of Stoke’s law
adapted to ionic solutions:

fdrag = κηRiv(t) (B.2)

The other force acting on the ion is, of course, the electrostatic force:

fe =
ziFχ

NA
(B.3)

Applying Newton’s second law, we get:

fe − fdrag = mionaion =
M

NA

dv(t)
dt

(B.4)

But we also know that:
fe − fdrag =

ziFχ

NA
− κηRiv(t) (B.5)

After substitution and rearrangement, we get a first order ordinary differential equation of
v(t):

dv(t)
dt
+

NAκηRi

M
v(t) =

ziFχ

M
(B.6)

Assuming v(t = 0) = 0 and a constant electric field leads to:

v(t) =
ziFχ

NAκηRi

[
1 − exp

(
−

NAκηRi

M
t
)]

(B.7)

Using typical values found M , η, Ri and zi , Oldham et al. showed that the time needed

110



for v(t) is of the order of 10−14 s, i.e., practically nil [19]. Consequently, one can safely
assume the value of v(t) to be time-independent. Hence:

v =
ziFχ

NAκηRi
(B.8)
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